Evaluate
\left(k-6\right)\left(k-1\right)
Expand
k^{2}-7k+6
Share
Copied to clipboard
\frac{\left(15k^{2}-7k-2\right)\left(k^{3}+2k^{2}-48k\right)}{\left(k^{2}+8k\right)\left(3k-2\right)}\times \frac{k^{2}-3k+2}{5k^{2}-9k-2}
Divide \frac{15k^{2}-7k-2}{k^{2}+8k} by \frac{3k-2}{k^{3}+2k^{2}-48k} by multiplying \frac{15k^{2}-7k-2}{k^{2}+8k} by the reciprocal of \frac{3k-2}{k^{3}+2k^{2}-48k}.
\frac{k\left(k-6\right)\left(3k-2\right)\left(k+8\right)\left(5k+1\right)}{k\left(3k-2\right)\left(k+8\right)}\times \frac{k^{2}-3k+2}{5k^{2}-9k-2}
Factor the expressions that are not already factored in \frac{\left(15k^{2}-7k-2\right)\left(k^{3}+2k^{2}-48k\right)}{\left(k^{2}+8k\right)\left(3k-2\right)}.
\left(k-6\right)\left(5k+1\right)\times \frac{k^{2}-3k+2}{5k^{2}-9k-2}
Cancel out k\left(3k-2\right)\left(k+8\right) in both numerator and denominator.
\left(5k^{2}-29k-6\right)\times \frac{k^{2}-3k+2}{5k^{2}-9k-2}
Expand the expression.
\left(5k^{2}-29k-6\right)\times \frac{\left(k-2\right)\left(k-1\right)}{\left(k-2\right)\left(5k+1\right)}
Factor the expressions that are not already factored in \frac{k^{2}-3k+2}{5k^{2}-9k-2}.
\left(5k^{2}-29k-6\right)\times \frac{k-1}{5k+1}
Cancel out k-2 in both numerator and denominator.
\frac{\left(5k^{2}-29k-6\right)\left(k-1\right)}{5k+1}
Express \left(5k^{2}-29k-6\right)\times \frac{k-1}{5k+1} as a single fraction.
\frac{\left(k-6\right)\left(k-1\right)\left(5k+1\right)}{5k+1}
Factor the expressions that are not already factored.
\left(k-6\right)\left(k-1\right)
Cancel out 5k+1 in both numerator and denominator.
k^{2}-7k+6
Expand the expression.
\frac{\left(15k^{2}-7k-2\right)\left(k^{3}+2k^{2}-48k\right)}{\left(k^{2}+8k\right)\left(3k-2\right)}\times \frac{k^{2}-3k+2}{5k^{2}-9k-2}
Divide \frac{15k^{2}-7k-2}{k^{2}+8k} by \frac{3k-2}{k^{3}+2k^{2}-48k} by multiplying \frac{15k^{2}-7k-2}{k^{2}+8k} by the reciprocal of \frac{3k-2}{k^{3}+2k^{2}-48k}.
\frac{k\left(k-6\right)\left(3k-2\right)\left(k+8\right)\left(5k+1\right)}{k\left(3k-2\right)\left(k+8\right)}\times \frac{k^{2}-3k+2}{5k^{2}-9k-2}
Factor the expressions that are not already factored in \frac{\left(15k^{2}-7k-2\right)\left(k^{3}+2k^{2}-48k\right)}{\left(k^{2}+8k\right)\left(3k-2\right)}.
\left(k-6\right)\left(5k+1\right)\times \frac{k^{2}-3k+2}{5k^{2}-9k-2}
Cancel out k\left(3k-2\right)\left(k+8\right) in both numerator and denominator.
\left(5k^{2}-29k-6\right)\times \frac{k^{2}-3k+2}{5k^{2}-9k-2}
Expand the expression.
\left(5k^{2}-29k-6\right)\times \frac{\left(k-2\right)\left(k-1\right)}{\left(k-2\right)\left(5k+1\right)}
Factor the expressions that are not already factored in \frac{k^{2}-3k+2}{5k^{2}-9k-2}.
\left(5k^{2}-29k-6\right)\times \frac{k-1}{5k+1}
Cancel out k-2 in both numerator and denominator.
\frac{\left(5k^{2}-29k-6\right)\left(k-1\right)}{5k+1}
Express \left(5k^{2}-29k-6\right)\times \frac{k-1}{5k+1} as a single fraction.
\frac{\left(k-6\right)\left(k-1\right)\left(5k+1\right)}{5k+1}
Factor the expressions that are not already factored.
\left(k-6\right)\left(k-1\right)
Cancel out 5k+1 in both numerator and denominator.
k^{2}-7k+6
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}