Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(15k^{2}-7k-2\right)\left(k^{3}+2k^{2}-48k\right)}{\left(k^{2}+8k\right)\left(3k-2\right)}\times \frac{k^{2}-3k+2}{5k^{2}-9k-2}
Divide \frac{15k^{2}-7k-2}{k^{2}+8k} by \frac{3k-2}{k^{3}+2k^{2}-48k} by multiplying \frac{15k^{2}-7k-2}{k^{2}+8k} by the reciprocal of \frac{3k-2}{k^{3}+2k^{2}-48k}.
\frac{k\left(k-6\right)\left(3k-2\right)\left(k+8\right)\left(5k+1\right)}{k\left(3k-2\right)\left(k+8\right)}\times \frac{k^{2}-3k+2}{5k^{2}-9k-2}
Factor the expressions that are not already factored in \frac{\left(15k^{2}-7k-2\right)\left(k^{3}+2k^{2}-48k\right)}{\left(k^{2}+8k\right)\left(3k-2\right)}.
\left(k-6\right)\left(5k+1\right)\times \frac{k^{2}-3k+2}{5k^{2}-9k-2}
Cancel out k\left(3k-2\right)\left(k+8\right) in both numerator and denominator.
\left(5k^{2}-29k-6\right)\times \frac{k^{2}-3k+2}{5k^{2}-9k-2}
Expand the expression.
\left(5k^{2}-29k-6\right)\times \frac{\left(k-2\right)\left(k-1\right)}{\left(k-2\right)\left(5k+1\right)}
Factor the expressions that are not already factored in \frac{k^{2}-3k+2}{5k^{2}-9k-2}.
\left(5k^{2}-29k-6\right)\times \frac{k-1}{5k+1}
Cancel out k-2 in both numerator and denominator.
\frac{\left(5k^{2}-29k-6\right)\left(k-1\right)}{5k+1}
Express \left(5k^{2}-29k-6\right)\times \frac{k-1}{5k+1} as a single fraction.
\frac{\left(k-6\right)\left(k-1\right)\left(5k+1\right)}{5k+1}
Factor the expressions that are not already factored.
\left(k-6\right)\left(k-1\right)
Cancel out 5k+1 in both numerator and denominator.
k^{2}-7k+6
Expand the expression.
\frac{\left(15k^{2}-7k-2\right)\left(k^{3}+2k^{2}-48k\right)}{\left(k^{2}+8k\right)\left(3k-2\right)}\times \frac{k^{2}-3k+2}{5k^{2}-9k-2}
Divide \frac{15k^{2}-7k-2}{k^{2}+8k} by \frac{3k-2}{k^{3}+2k^{2}-48k} by multiplying \frac{15k^{2}-7k-2}{k^{2}+8k} by the reciprocal of \frac{3k-2}{k^{3}+2k^{2}-48k}.
\frac{k\left(k-6\right)\left(3k-2\right)\left(k+8\right)\left(5k+1\right)}{k\left(3k-2\right)\left(k+8\right)}\times \frac{k^{2}-3k+2}{5k^{2}-9k-2}
Factor the expressions that are not already factored in \frac{\left(15k^{2}-7k-2\right)\left(k^{3}+2k^{2}-48k\right)}{\left(k^{2}+8k\right)\left(3k-2\right)}.
\left(k-6\right)\left(5k+1\right)\times \frac{k^{2}-3k+2}{5k^{2}-9k-2}
Cancel out k\left(3k-2\right)\left(k+8\right) in both numerator and denominator.
\left(5k^{2}-29k-6\right)\times \frac{k^{2}-3k+2}{5k^{2}-9k-2}
Expand the expression.
\left(5k^{2}-29k-6\right)\times \frac{\left(k-2\right)\left(k-1\right)}{\left(k-2\right)\left(5k+1\right)}
Factor the expressions that are not already factored in \frac{k^{2}-3k+2}{5k^{2}-9k-2}.
\left(5k^{2}-29k-6\right)\times \frac{k-1}{5k+1}
Cancel out k-2 in both numerator and denominator.
\frac{\left(5k^{2}-29k-6\right)\left(k-1\right)}{5k+1}
Express \left(5k^{2}-29k-6\right)\times \frac{k-1}{5k+1} as a single fraction.
\frac{\left(k-6\right)\left(k-1\right)\left(5k+1\right)}{5k+1}
Factor the expressions that are not already factored.
\left(k-6\right)\left(k-1\right)
Cancel out 5k+1 in both numerator and denominator.
k^{2}-7k+6
Expand the expression.