Evaluate
\frac{9b^{14}}{a^{6}}
Expand
\frac{9b^{14}}{a^{6}}
Share
Copied to clipboard
\left(\frac{a^{3}}{3b^{7}}\right)^{-2}
Cancel out 15b in both numerator and denominator.
\frac{\left(a^{3}\right)^{-2}}{\left(3b^{7}\right)^{-2}}
To raise \frac{a^{3}}{3b^{7}} to a power, raise both numerator and denominator to the power and then divide.
\frac{a^{-6}}{\left(3b^{7}\right)^{-2}}
To raise a power to another power, multiply the exponents. Multiply 3 and -2 to get -6.
\frac{a^{-6}}{3^{-2}\left(b^{7}\right)^{-2}}
Expand \left(3b^{7}\right)^{-2}.
\frac{a^{-6}}{3^{-2}b^{-14}}
To raise a power to another power, multiply the exponents. Multiply 7 and -2 to get -14.
\frac{a^{-6}}{\frac{1}{9}b^{-14}}
Calculate 3 to the power of -2 and get \frac{1}{9}.
\left(\frac{a^{3}}{3b^{7}}\right)^{-2}
Cancel out 15b in both numerator and denominator.
\frac{\left(a^{3}\right)^{-2}}{\left(3b^{7}\right)^{-2}}
To raise \frac{a^{3}}{3b^{7}} to a power, raise both numerator and denominator to the power and then divide.
\frac{a^{-6}}{\left(3b^{7}\right)^{-2}}
To raise a power to another power, multiply the exponents. Multiply 3 and -2 to get -6.
\frac{a^{-6}}{3^{-2}\left(b^{7}\right)^{-2}}
Expand \left(3b^{7}\right)^{-2}.
\frac{a^{-6}}{3^{-2}b^{-14}}
To raise a power to another power, multiply the exponents. Multiply 7 and -2 to get -14.
\frac{a^{-6}}{\frac{1}{9}b^{-14}}
Calculate 3 to the power of -2 and get \frac{1}{9}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}