Solve for b
b=-\sqrt{19}\approx -4.358898944
b=\sqrt{19}\approx 4.358898944
b=\sqrt{11}\approx 3.31662479
b=-\sqrt{11}\approx -3.31662479
Share
Copied to clipboard
\left(\frac{\left(15-b^{2}\right)\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\right)^{2}+1=9
Rationalize the denominator of \frac{15-b^{2}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\left(\frac{\left(15-b^{2}\right)\sqrt{2}}{2}\right)^{2}+1=9
The square of \sqrt{2} is 2.
\frac{\left(\left(15-b^{2}\right)\sqrt{2}\right)^{2}}{2^{2}}+1=9
To raise \frac{\left(15-b^{2}\right)\sqrt{2}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\left(15-b^{2}\right)\sqrt{2}\right)^{2}}{2^{2}}+\frac{2^{2}}{2^{2}}=9
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{2^{2}}{2^{2}}.
\frac{\left(\left(15-b^{2}\right)\sqrt{2}\right)^{2}+2^{2}}{2^{2}}=9
Since \frac{\left(\left(15-b^{2}\right)\sqrt{2}\right)^{2}}{2^{2}} and \frac{2^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
\frac{\left(15-b^{2}\right)^{2}\left(\sqrt{2}\right)^{2}+2^{2}}{2^{2}}=9
Expand \left(\left(15-b^{2}\right)\sqrt{2}\right)^{2}.
\frac{\left(225-30b^{2}+\left(b^{2}\right)^{2}\right)\left(\sqrt{2}\right)^{2}+2^{2}}{2^{2}}=9
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(15-b^{2}\right)^{2}.
\frac{\left(225-30b^{2}+b^{4}\right)\left(\sqrt{2}\right)^{2}+2^{2}}{2^{2}}=9
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{\left(225-30b^{2}+b^{4}\right)\times 2+2^{2}}{2^{2}}=9
The square of \sqrt{2} is 2.
\frac{\left(225-30b^{2}+b^{4}\right)\times 2+4}{2^{2}}=9
Calculate 2 to the power of 2 and get 4.
\frac{\left(225-30b^{2}+b^{4}\right)\times 2+4}{4}=9
Calculate 2 to the power of 2 and get 4.
\frac{1}{2}\left(225-30b^{2}+b^{4}\right)+1=9
Divide each term of \left(225-30b^{2}+b^{4}\right)\times 2+4 by 4 to get \frac{1}{2}\left(225-30b^{2}+b^{4}\right)+1.
\frac{225}{2}-15b^{2}+\frac{1}{2}b^{4}+1=9
Use the distributive property to multiply \frac{1}{2} by 225-30b^{2}+b^{4}.
\frac{227}{2}-15b^{2}+\frac{1}{2}b^{4}=9
Add \frac{225}{2} and 1 to get \frac{227}{2}.
\frac{227}{2}-15b^{2}+\frac{1}{2}b^{4}-9=0
Subtract 9 from both sides.
\frac{209}{2}-15b^{2}+\frac{1}{2}b^{4}=0
Subtract 9 from \frac{227}{2} to get \frac{209}{2}.
\frac{1}{2}t^{2}-15t+\frac{209}{2}=0
Substitute t for b^{2}.
t=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\times \frac{1}{2}\times \frac{209}{2}}}{\frac{1}{2}\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute \frac{1}{2} for a, -15 for b, and \frac{209}{2} for c in the quadratic formula.
t=\frac{15±4}{1}
Do the calculations.
t=19 t=11
Solve the equation t=\frac{15±4}{1} when ± is plus and when ± is minus.
b=\sqrt{19} b=-\sqrt{19} b=\sqrt{11} b=-\sqrt{11}
Since b=t^{2}, the solutions are obtained by evaluating b=±\sqrt{t} for each t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}