Skip to main content
Solve for x
Tick mark Image
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(15\sqrt{23}\right)^{2}}{16^{2}}+\left(\frac{93}{16}-x\right)^{2}=\left(x+y\right)^{2}
To raise \frac{15\sqrt{23}}{16} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(15\sqrt{23}\right)^{2}}{16^{2}}+\frac{8649}{256}-\frac{93}{8}x+x^{2}=\left(x+y\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{93}{16}-x\right)^{2}.
\frac{\left(15\sqrt{23}\right)^{2}}{256}+\frac{8649}{256}-\frac{93}{8}x+x^{2}=\left(x+y\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Expand 16^{2}.
\frac{\left(15\sqrt{23}\right)^{2}+8649}{256}-\frac{93}{8}x+x^{2}=\left(x+y\right)^{2}
Since \frac{\left(15\sqrt{23}\right)^{2}}{256} and \frac{8649}{256} have the same denominator, add them by adding their numerators.
\frac{\left(15\sqrt{23}\right)^{2}+8649}{256}-\frac{93}{8}x+x^{2}=x^{2}+2xy+y^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+y\right)^{2}.
\frac{15^{2}\left(\sqrt{23}\right)^{2}+8649}{256}-\frac{93}{8}x+x^{2}=x^{2}+2xy+y^{2}
Expand \left(15\sqrt{23}\right)^{2}.
\frac{225\left(\sqrt{23}\right)^{2}+8649}{256}-\frac{93}{8}x+x^{2}=x^{2}+2xy+y^{2}
Calculate 15 to the power of 2 and get 225.
\frac{225\times 23+8649}{256}-\frac{93}{8}x+x^{2}=x^{2}+2xy+y^{2}
The square of \sqrt{23} is 23.
\frac{5175+8649}{256}-\frac{93}{8}x+x^{2}=x^{2}+2xy+y^{2}
Multiply 225 and 23 to get 5175.
\frac{13824}{256}-\frac{93}{8}x+x^{2}=x^{2}+2xy+y^{2}
Add 5175 and 8649 to get 13824.
54-\frac{93}{8}x+x^{2}=x^{2}+2xy+y^{2}
Divide 13824 by 256 to get 54.
54-\frac{93}{8}x+x^{2}-x^{2}=2xy+y^{2}
Subtract x^{2} from both sides.
54-\frac{93}{8}x=2xy+y^{2}
Combine x^{2} and -x^{2} to get 0.
54-\frac{93}{8}x-2xy=y^{2}
Subtract 2xy from both sides.
-\frac{93}{8}x-2xy=y^{2}-54
Subtract 54 from both sides.
\left(-\frac{93}{8}-2y\right)x=y^{2}-54
Combine all terms containing x.
\left(-2y-\frac{93}{8}\right)x=y^{2}-54
The equation is in standard form.
\frac{\left(-2y-\frac{93}{8}\right)x}{-2y-\frac{93}{8}}=\frac{y^{2}-54}{-2y-\frac{93}{8}}
Divide both sides by -2y-\frac{93}{8}.
x=\frac{y^{2}-54}{-2y-\frac{93}{8}}
Dividing by -2y-\frac{93}{8} undoes the multiplication by -2y-\frac{93}{8}.
x=-\frac{8\left(y^{2}-54\right)}{16y+93}
Divide y^{2}-54 by -2y-\frac{93}{8}.