Solve for x
x=\frac{8\left(54-y^{2}\right)}{16y+93}
y\neq -\frac{93}{16}
Solve for y
y=\frac{\sqrt{16x^{2}-186x+864}}{4}-x
y=-\frac{\sqrt{16x^{2}-186x+864}}{4}-x
Graph
Share
Copied to clipboard
\frac{\left(15\sqrt{23}\right)^{2}}{16^{2}}+\left(\frac{93}{16}-x\right)^{2}=\left(x+y\right)^{2}
To raise \frac{15\sqrt{23}}{16} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(15\sqrt{23}\right)^{2}}{16^{2}}+\frac{8649}{256}-\frac{93}{8}x+x^{2}=\left(x+y\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{93}{16}-x\right)^{2}.
\frac{\left(15\sqrt{23}\right)^{2}}{256}+\frac{8649}{256}-\frac{93}{8}x+x^{2}=\left(x+y\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Expand 16^{2}.
\frac{\left(15\sqrt{23}\right)^{2}+8649}{256}-\frac{93}{8}x+x^{2}=\left(x+y\right)^{2}
Since \frac{\left(15\sqrt{23}\right)^{2}}{256} and \frac{8649}{256} have the same denominator, add them by adding their numerators.
\frac{\left(15\sqrt{23}\right)^{2}+8649}{256}-\frac{93}{8}x+x^{2}=x^{2}+2xy+y^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+y\right)^{2}.
\frac{15^{2}\left(\sqrt{23}\right)^{2}+8649}{256}-\frac{93}{8}x+x^{2}=x^{2}+2xy+y^{2}
Expand \left(15\sqrt{23}\right)^{2}.
\frac{225\left(\sqrt{23}\right)^{2}+8649}{256}-\frac{93}{8}x+x^{2}=x^{2}+2xy+y^{2}
Calculate 15 to the power of 2 and get 225.
\frac{225\times 23+8649}{256}-\frac{93}{8}x+x^{2}=x^{2}+2xy+y^{2}
The square of \sqrt{23} is 23.
\frac{5175+8649}{256}-\frac{93}{8}x+x^{2}=x^{2}+2xy+y^{2}
Multiply 225 and 23 to get 5175.
\frac{13824}{256}-\frac{93}{8}x+x^{2}=x^{2}+2xy+y^{2}
Add 5175 and 8649 to get 13824.
54-\frac{93}{8}x+x^{2}=x^{2}+2xy+y^{2}
Divide 13824 by 256 to get 54.
54-\frac{93}{8}x+x^{2}-x^{2}=2xy+y^{2}
Subtract x^{2} from both sides.
54-\frac{93}{8}x=2xy+y^{2}
Combine x^{2} and -x^{2} to get 0.
54-\frac{93}{8}x-2xy=y^{2}
Subtract 2xy from both sides.
-\frac{93}{8}x-2xy=y^{2}-54
Subtract 54 from both sides.
\left(-\frac{93}{8}-2y\right)x=y^{2}-54
Combine all terms containing x.
\left(-2y-\frac{93}{8}\right)x=y^{2}-54
The equation is in standard form.
\frac{\left(-2y-\frac{93}{8}\right)x}{-2y-\frac{93}{8}}=\frac{y^{2}-54}{-2y-\frac{93}{8}}
Divide both sides by -2y-\frac{93}{8}.
x=\frac{y^{2}-54}{-2y-\frac{93}{8}}
Dividing by -2y-\frac{93}{8} undoes the multiplication by -2y-\frac{93}{8}.
x=-\frac{8\left(y^{2}-54\right)}{16y+93}
Divide y^{2}-54 by -2y-\frac{93}{8}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}