Evaluate
\frac{1617}{1000}=1.617
Factor
\frac{3 \cdot 7 ^ {2} \cdot 11}{2 ^ {3} \cdot 5 ^ {3}} = 1\frac{617}{1000} = 1.617
Share
Copied to clipboard
\frac{\frac{14}{15}-\frac{14\times 3}{15\times 80}}{\frac{5}{9}}
Multiply \frac{14}{15} times \frac{3}{80} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{14}{15}-\frac{42}{1200}}{\frac{5}{9}}
Do the multiplications in the fraction \frac{14\times 3}{15\times 80}.
\frac{\frac{14}{15}-\frac{7}{200}}{\frac{5}{9}}
Reduce the fraction \frac{42}{1200} to lowest terms by extracting and canceling out 6.
\frac{\frac{560}{600}-\frac{21}{600}}{\frac{5}{9}}
Least common multiple of 15 and 200 is 600. Convert \frac{14}{15} and \frac{7}{200} to fractions with denominator 600.
\frac{\frac{560-21}{600}}{\frac{5}{9}}
Since \frac{560}{600} and \frac{21}{600} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{539}{600}}{\frac{5}{9}}
Subtract 21 from 560 to get 539.
\frac{539}{600}\times \frac{9}{5}
Divide \frac{539}{600} by \frac{5}{9} by multiplying \frac{539}{600} by the reciprocal of \frac{5}{9}.
\frac{539\times 9}{600\times 5}
Multiply \frac{539}{600} times \frac{9}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{4851}{3000}
Do the multiplications in the fraction \frac{539\times 9}{600\times 5}.
\frac{1617}{1000}
Reduce the fraction \frac{4851}{3000} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}