Solve for y
y=8
y = -\frac{3}{2} = -1\frac{1}{2} = -1.5
Graph
Share
Copied to clipboard
\frac{13}{2}y-y^{2}=-12
Use the distributive property to multiply \frac{13}{2}-y by y.
\frac{13}{2}y-y^{2}+12=0
Add 12 to both sides.
-y^{2}+\frac{13}{2}y+12=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\frac{13}{2}±\sqrt{\left(\frac{13}{2}\right)^{2}-4\left(-1\right)\times 12}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, \frac{13}{2} for b, and 12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\frac{13}{2}±\sqrt{\frac{169}{4}-4\left(-1\right)\times 12}}{2\left(-1\right)}
Square \frac{13}{2} by squaring both the numerator and the denominator of the fraction.
y=\frac{-\frac{13}{2}±\sqrt{\frac{169}{4}+4\times 12}}{2\left(-1\right)}
Multiply -4 times -1.
y=\frac{-\frac{13}{2}±\sqrt{\frac{169}{4}+48}}{2\left(-1\right)}
Multiply 4 times 12.
y=\frac{-\frac{13}{2}±\sqrt{\frac{361}{4}}}{2\left(-1\right)}
Add \frac{169}{4} to 48.
y=\frac{-\frac{13}{2}±\frac{19}{2}}{2\left(-1\right)}
Take the square root of \frac{361}{4}.
y=\frac{-\frac{13}{2}±\frac{19}{2}}{-2}
Multiply 2 times -1.
y=\frac{3}{-2}
Now solve the equation y=\frac{-\frac{13}{2}±\frac{19}{2}}{-2} when ± is plus. Add -\frac{13}{2} to \frac{19}{2} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
y=-\frac{3}{2}
Divide 3 by -2.
y=-\frac{16}{-2}
Now solve the equation y=\frac{-\frac{13}{2}±\frac{19}{2}}{-2} when ± is minus. Subtract \frac{19}{2} from -\frac{13}{2} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
y=8
Divide -16 by -2.
y=-\frac{3}{2} y=8
The equation is now solved.
\frac{13}{2}y-y^{2}=-12
Use the distributive property to multiply \frac{13}{2}-y by y.
-y^{2}+\frac{13}{2}y=-12
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-y^{2}+\frac{13}{2}y}{-1}=-\frac{12}{-1}
Divide both sides by -1.
y^{2}+\frac{\frac{13}{2}}{-1}y=-\frac{12}{-1}
Dividing by -1 undoes the multiplication by -1.
y^{2}-\frac{13}{2}y=-\frac{12}{-1}
Divide \frac{13}{2} by -1.
y^{2}-\frac{13}{2}y=12
Divide -12 by -1.
y^{2}-\frac{13}{2}y+\left(-\frac{13}{4}\right)^{2}=12+\left(-\frac{13}{4}\right)^{2}
Divide -\frac{13}{2}, the coefficient of the x term, by 2 to get -\frac{13}{4}. Then add the square of -\frac{13}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-\frac{13}{2}y+\frac{169}{16}=12+\frac{169}{16}
Square -\frac{13}{4} by squaring both the numerator and the denominator of the fraction.
y^{2}-\frac{13}{2}y+\frac{169}{16}=\frac{361}{16}
Add 12 to \frac{169}{16}.
\left(y-\frac{13}{4}\right)^{2}=\frac{361}{16}
Factor y^{2}-\frac{13}{2}y+\frac{169}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{13}{4}\right)^{2}}=\sqrt{\frac{361}{16}}
Take the square root of both sides of the equation.
y-\frac{13}{4}=\frac{19}{4} y-\frac{13}{4}=-\frac{19}{4}
Simplify.
y=8 y=-\frac{3}{2}
Add \frac{13}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}