Solve for y
y=\frac{2\sqrt{3}\times 5^{\frac{3}{4}}e^{-\frac{\arctan(\frac{\sqrt{41}}{2})i}{2}}}{5}\approx 1.866355157-1.372327065i
y=\frac{2\sqrt{3}\times 5^{\frac{3}{4}}e^{\frac{-\arctan(\frac{\sqrt{41}}{2})i+2\pi i}{2}}}{5}\approx -1.866355157+1.372327065i
y=\frac{2\sqrt{3}\times 5^{\frac{3}{4}}e^{\frac{\arctan(\frac{\sqrt{41}}{2})i}{2}}}{5}\approx 1.866355157+1.372327065i
y=\frac{2\sqrt{3}\times 5^{\frac{3}{4}}e^{\frac{\arctan(\frac{\sqrt{41}}{2})i+2\pi i}{2}}}{5}\approx -1.866355157-1.372327065i
Share
Copied to clipboard
\frac{12^{2}}{y^{2}}+5y^{2}=16
To raise \frac{12}{y} to a power, raise both numerator and denominator to the power and then divide.
\frac{12^{2}}{y^{2}}+\frac{5y^{2}y^{2}}{y^{2}}=16
To add or subtract expressions, expand them to make their denominators the same. Multiply 5y^{2} times \frac{y^{2}}{y^{2}}.
\frac{12^{2}+5y^{2}y^{2}}{y^{2}}=16
Since \frac{12^{2}}{y^{2}} and \frac{5y^{2}y^{2}}{y^{2}} have the same denominator, add them by adding their numerators.
\frac{12^{2}+5y^{4}}{y^{2}}=16
Do the multiplications in 12^{2}+5y^{2}y^{2}.
\frac{144+5y^{4}}{y^{2}}=16
Combine like terms in 12^{2}+5y^{4}.
\frac{144+5y^{4}}{y^{2}}-16=0
Subtract 16 from both sides.
\frac{144+5y^{4}}{y^{2}}-\frac{16y^{2}}{y^{2}}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply 16 times \frac{y^{2}}{y^{2}}.
\frac{144+5y^{4}-16y^{2}}{y^{2}}=0
Since \frac{144+5y^{4}}{y^{2}} and \frac{16y^{2}}{y^{2}} have the same denominator, subtract them by subtracting their numerators.
144+5y^{4}-16y^{2}=0
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by y^{2}.
5t^{2}-16t+144=0
Substitute t for y^{2}.
t=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 5\times 144}}{2\times 5}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 5 for a, -16 for b, and 144 for c in the quadratic formula.
t=\frac{16±\sqrt{-2624}}{10}
Do the calculations.
t=\frac{8+4\sqrt{41}i}{5} t=\frac{-4\sqrt{41}i+8}{5}
Solve the equation t=\frac{16±\sqrt{-2624}}{10} when ± is plus and when ± is minus.
y=\frac{2\sqrt{3}\times 5^{\frac{3}{4}}e^{\frac{\arctan(\frac{\sqrt{41}}{2})i+2\pi i}{2}}}{5} y=\frac{2\sqrt{3}\times 5^{\frac{3}{4}}e^{\frac{\arctan(\frac{\sqrt{41}}{2})i}{2}}}{5} y=\frac{2\sqrt{3}\times 5^{\frac{3}{4}}e^{-\frac{\arctan(\frac{\sqrt{41}}{2})i}{2}}}{5} y=\frac{2\sqrt{3}\times 5^{\frac{3}{4}}e^{\frac{-\arctan(\frac{\sqrt{41}}{2})i+2\pi i}{2}}}{5}
Since y=t^{2}, the solutions are obtained by evaluating y=±\sqrt{t} for each t.
y=\frac{2\sqrt{3}\times 5^{\frac{3}{4}}e^{\frac{-\arctan(\frac{\sqrt{41}}{2})i+2\pi i}{2}}}{5}\text{, }y\neq 0 y=\frac{2\sqrt{3}\times 5^{\frac{3}{4}}e^{-\frac{\arctan(\frac{\sqrt{41}}{2})i}{2}}}{5}\text{, }y\neq 0 y=\frac{2\sqrt{3}\times 5^{\frac{3}{4}}e^{\frac{\arctan(\frac{\sqrt{41}}{2})i}{2}}}{5}\text{, }y\neq 0 y=\frac{2\sqrt{3}\times 5^{\frac{3}{4}}e^{\frac{\arctan(\frac{\sqrt{41}}{2})i+2\pi i}{2}}}{5}\text{, }y\neq 0
Variable y cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}