Solve for x (complex solution)
x=\frac{-25+5\sqrt{407}i}{432}\approx -0.05787037+0.23349816i
x=\frac{-5\sqrt{407}i-25}{432}\approx -0.05787037-0.23349816i
Graph
Quiz
Quadratic Equation
5 problems similar to:
( \frac { 12 } { 5 } \sqrt { 3 } x ) ^ { 2 } + 2 x + 1 = 0
Share
Copied to clipboard
\left(\frac{12}{5}\right)^{2}\left(\sqrt{3}\right)^{2}x^{2}+2x+1=0
Expand \left(\frac{12}{5}\sqrt{3}x\right)^{2}.
\frac{144}{25}\left(\sqrt{3}\right)^{2}x^{2}+2x+1=0
Calculate \frac{12}{5} to the power of 2 and get \frac{144}{25}.
\frac{144}{25}\times 3x^{2}+2x+1=0
The square of \sqrt{3} is 3.
\frac{432}{25}x^{2}+2x+1=0
Multiply \frac{144}{25} and 3 to get \frac{432}{25}.
x=\frac{-2±\sqrt{2^{2}-4\times \frac{432}{25}}}{2\times \frac{432}{25}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{432}{25} for a, 2 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times \frac{432}{25}}}{2\times \frac{432}{25}}
Square 2.
x=\frac{-2±\sqrt{4-\frac{1728}{25}}}{2\times \frac{432}{25}}
Multiply -4 times \frac{432}{25}.
x=\frac{-2±\sqrt{-\frac{1628}{25}}}{2\times \frac{432}{25}}
Add 4 to -\frac{1728}{25}.
x=\frac{-2±\frac{2\sqrt{407}i}{5}}{2\times \frac{432}{25}}
Take the square root of -\frac{1628}{25}.
x=\frac{-2±\frac{2\sqrt{407}i}{5}}{\frac{864}{25}}
Multiply 2 times \frac{432}{25}.
x=\frac{\frac{2\sqrt{407}i}{5}-2}{\frac{864}{25}}
Now solve the equation x=\frac{-2±\frac{2\sqrt{407}i}{5}}{\frac{864}{25}} when ± is plus. Add -2 to \frac{2i\sqrt{407}}{5}.
x=\frac{-25+5\sqrt{407}i}{432}
Divide -2+\frac{2i\sqrt{407}}{5} by \frac{864}{25} by multiplying -2+\frac{2i\sqrt{407}}{5} by the reciprocal of \frac{864}{25}.
x=\frac{-\frac{2\sqrt{407}i}{5}-2}{\frac{864}{25}}
Now solve the equation x=\frac{-2±\frac{2\sqrt{407}i}{5}}{\frac{864}{25}} when ± is minus. Subtract \frac{2i\sqrt{407}}{5} from -2.
x=\frac{-5\sqrt{407}i-25}{432}
Divide -2-\frac{2i\sqrt{407}}{5} by \frac{864}{25} by multiplying -2-\frac{2i\sqrt{407}}{5} by the reciprocal of \frac{864}{25}.
x=\frac{-25+5\sqrt{407}i}{432} x=\frac{-5\sqrt{407}i-25}{432}
The equation is now solved.
\left(\frac{12}{5}\right)^{2}\left(\sqrt{3}\right)^{2}x^{2}+2x+1=0
Expand \left(\frac{12}{5}\sqrt{3}x\right)^{2}.
\frac{144}{25}\left(\sqrt{3}\right)^{2}x^{2}+2x+1=0
Calculate \frac{12}{5} to the power of 2 and get \frac{144}{25}.
\frac{144}{25}\times 3x^{2}+2x+1=0
The square of \sqrt{3} is 3.
\frac{432}{25}x^{2}+2x+1=0
Multiply \frac{144}{25} and 3 to get \frac{432}{25}.
\frac{432}{25}x^{2}+2x=-1
Subtract 1 from both sides. Anything subtracted from zero gives its negation.
\frac{\frac{432}{25}x^{2}+2x}{\frac{432}{25}}=-\frac{1}{\frac{432}{25}}
Divide both sides of the equation by \frac{432}{25}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{2}{\frac{432}{25}}x=-\frac{1}{\frac{432}{25}}
Dividing by \frac{432}{25} undoes the multiplication by \frac{432}{25}.
x^{2}+\frac{25}{216}x=-\frac{1}{\frac{432}{25}}
Divide 2 by \frac{432}{25} by multiplying 2 by the reciprocal of \frac{432}{25}.
x^{2}+\frac{25}{216}x=-\frac{25}{432}
Divide -1 by \frac{432}{25} by multiplying -1 by the reciprocal of \frac{432}{25}.
x^{2}+\frac{25}{216}x+\left(\frac{25}{432}\right)^{2}=-\frac{25}{432}+\left(\frac{25}{432}\right)^{2}
Divide \frac{25}{216}, the coefficient of the x term, by 2 to get \frac{25}{432}. Then add the square of \frac{25}{432} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{25}{216}x+\frac{625}{186624}=-\frac{25}{432}+\frac{625}{186624}
Square \frac{25}{432} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{25}{216}x+\frac{625}{186624}=-\frac{10175}{186624}
Add -\frac{25}{432} to \frac{625}{186624} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{25}{432}\right)^{2}=-\frac{10175}{186624}
Factor x^{2}+\frac{25}{216}x+\frac{625}{186624}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{25}{432}\right)^{2}}=\sqrt{-\frac{10175}{186624}}
Take the square root of both sides of the equation.
x+\frac{25}{432}=\frac{5\sqrt{407}i}{432} x+\frac{25}{432}=-\frac{5\sqrt{407}i}{432}
Simplify.
x=\frac{-25+5\sqrt{407}i}{432} x=\frac{-5\sqrt{407}i-25}{432}
Subtract \frac{25}{432} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}