Solve for x
x=\frac{2}{3}\approx 0.666666667
Graph
Share
Copied to clipboard
\frac{11}{9}-x=x\times \frac{\frac{17}{3}}{\frac{34}{5}}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
\frac{11}{9}-x=x\times \frac{17}{3}\times \frac{5}{34}
Divide \frac{17}{3} by \frac{34}{5} by multiplying \frac{17}{3} by the reciprocal of \frac{34}{5}.
\frac{11}{9}-x=x\times \frac{17\times 5}{3\times 34}
Multiply \frac{17}{3} times \frac{5}{34} by multiplying numerator times numerator and denominator times denominator.
\frac{11}{9}-x=x\times \frac{85}{102}
Do the multiplications in the fraction \frac{17\times 5}{3\times 34}.
\frac{11}{9}-x=x\times \frac{5}{6}
Reduce the fraction \frac{85}{102} to lowest terms by extracting and canceling out 17.
\frac{11}{9}-x-x\times \frac{5}{6}=0
Subtract x\times \frac{5}{6} from both sides.
\frac{11}{9}-\frac{11}{6}x=0
Combine -x and -x\times \frac{5}{6} to get -\frac{11}{6}x.
-\frac{11}{6}x=-\frac{11}{9}
Subtract \frac{11}{9} from both sides. Anything subtracted from zero gives its negation.
x=-\frac{11}{9}\left(-\frac{6}{11}\right)
Multiply both sides by -\frac{6}{11}, the reciprocal of -\frac{11}{6}.
x=\frac{-11\left(-6\right)}{9\times 11}
Multiply -\frac{11}{9} times -\frac{6}{11} by multiplying numerator times numerator and denominator times denominator.
x=\frac{66}{99}
Do the multiplications in the fraction \frac{-11\left(-6\right)}{9\times 11}.
x=\frac{2}{3}
Reduce the fraction \frac{66}{99} to lowest terms by extracting and canceling out 33.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}