Evaluate
\frac{292}{3}\approx 97.333333333
Factor
\frac{2 ^ {2} \cdot 73}{3} = 97\frac{1}{3} = 97.33333333333333
Share
Copied to clipboard
\left(\frac{11\times 15}{9}+\frac{6}{10}\times 10\right)\times \frac{100}{25}
Express \frac{11}{9}\times 15 as a single fraction.
\left(\frac{165}{9}+\frac{6}{10}\times 10\right)\times \frac{100}{25}
Multiply 11 and 15 to get 165.
\left(\frac{55}{3}+\frac{6}{10}\times 10\right)\times \frac{100}{25}
Reduce the fraction \frac{165}{9} to lowest terms by extracting and canceling out 3.
\left(\frac{55}{3}+\frac{3}{5}\times 10\right)\times \frac{100}{25}
Reduce the fraction \frac{6}{10} to lowest terms by extracting and canceling out 2.
\left(\frac{55}{3}+\frac{3\times 10}{5}\right)\times \frac{100}{25}
Express \frac{3}{5}\times 10 as a single fraction.
\left(\frac{55}{3}+\frac{30}{5}\right)\times \frac{100}{25}
Multiply 3 and 10 to get 30.
\left(\frac{55}{3}+6\right)\times \frac{100}{25}
Divide 30 by 5 to get 6.
\left(\frac{55}{3}+\frac{18}{3}\right)\times \frac{100}{25}
Convert 6 to fraction \frac{18}{3}.
\frac{55+18}{3}\times \frac{100}{25}
Since \frac{55}{3} and \frac{18}{3} have the same denominator, add them by adding their numerators.
\frac{73}{3}\times \frac{100}{25}
Add 55 and 18 to get 73.
\frac{73}{3}\times 4
Divide 100 by 25 to get 4.
\frac{73\times 4}{3}
Express \frac{73}{3}\times 4 as a single fraction.
\frac{292}{3}
Multiply 73 and 4 to get 292.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}