Evaluate
\frac{\sqrt{3}}{3}+2\approx 2.577350269
Share
Copied to clipboard
\frac{11}{6-\sqrt{3}}\times 1
Divide 6+\sqrt{3} by 6+\sqrt{3} to get 1.
\frac{11\left(6+\sqrt{3}\right)}{\left(6-\sqrt{3}\right)\left(6+\sqrt{3}\right)}\times 1
Rationalize the denominator of \frac{11}{6-\sqrt{3}} by multiplying numerator and denominator by 6+\sqrt{3}.
\frac{11\left(6+\sqrt{3}\right)}{6^{2}-\left(\sqrt{3}\right)^{2}}\times 1
Consider \left(6-\sqrt{3}\right)\left(6+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{11\left(6+\sqrt{3}\right)}{36-3}\times 1
Square 6. Square \sqrt{3}.
\frac{11\left(6+\sqrt{3}\right)}{33}\times 1
Subtract 3 from 36 to get 33.
\frac{1}{3}\left(6+\sqrt{3}\right)\times 1
Divide 11\left(6+\sqrt{3}\right) by 33 to get \frac{1}{3}\left(6+\sqrt{3}\right).
\left(\frac{1}{3}\times 6+\frac{1}{3}\sqrt{3}\right)\times 1
Use the distributive property to multiply \frac{1}{3} by 6+\sqrt{3}.
\left(\frac{6}{3}+\frac{1}{3}\sqrt{3}\right)\times 1
Multiply \frac{1}{3} and 6 to get \frac{6}{3}.
\left(2+\frac{1}{3}\sqrt{3}\right)\times 1
Divide 6 by 3 to get 2.
2+\frac{1}{3}\sqrt{3}
Use the distributive property to multiply 2+\frac{1}{3}\sqrt{3} by 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}