Solve for x
x = \frac{\sqrt{7372369} + 2693}{4} \approx 1352.052668306
x=\frac{2693-\sqrt{7372369}}{4}\approx -5.552668306
Graph
Share
Copied to clipboard
\left(3x+15\right)\times 1001-3x\times 100=2x\left(x+5\right)
Variable x cannot be equal to any of the values -5,0 since division by zero is not defined. Multiply both sides of the equation by 3x\left(x+5\right), the least common multiple of x,x+5,3.
3003x+15015-3x\times 100=2x\left(x+5\right)
Use the distributive property to multiply 3x+15 by 1001.
3003x+15015-300x=2x\left(x+5\right)
Multiply 3 and 100 to get 300.
3003x+15015-300x=2x^{2}+10x
Use the distributive property to multiply 2x by x+5.
3003x+15015-300x-2x^{2}=10x
Subtract 2x^{2} from both sides.
3003x+15015-300x-2x^{2}-10x=0
Subtract 10x from both sides.
2993x+15015-300x-2x^{2}=0
Combine 3003x and -10x to get 2993x.
2693x+15015-2x^{2}=0
Combine 2993x and -300x to get 2693x.
-2x^{2}+2693x+15015=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2693±\sqrt{2693^{2}-4\left(-2\right)\times 15015}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 2693 for b, and 15015 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2693±\sqrt{7252249-4\left(-2\right)\times 15015}}{2\left(-2\right)}
Square 2693.
x=\frac{-2693±\sqrt{7252249+8\times 15015}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-2693±\sqrt{7252249+120120}}{2\left(-2\right)}
Multiply 8 times 15015.
x=\frac{-2693±\sqrt{7372369}}{2\left(-2\right)}
Add 7252249 to 120120.
x=\frac{-2693±\sqrt{7372369}}{-4}
Multiply 2 times -2.
x=\frac{\sqrt{7372369}-2693}{-4}
Now solve the equation x=\frac{-2693±\sqrt{7372369}}{-4} when ± is plus. Add -2693 to \sqrt{7372369}.
x=\frac{2693-\sqrt{7372369}}{4}
Divide -2693+\sqrt{7372369} by -4.
x=\frac{-\sqrt{7372369}-2693}{-4}
Now solve the equation x=\frac{-2693±\sqrt{7372369}}{-4} when ± is minus. Subtract \sqrt{7372369} from -2693.
x=\frac{\sqrt{7372369}+2693}{4}
Divide -2693-\sqrt{7372369} by -4.
x=\frac{2693-\sqrt{7372369}}{4} x=\frac{\sqrt{7372369}+2693}{4}
The equation is now solved.
\left(3x+15\right)\times 1001-3x\times 100=2x\left(x+5\right)
Variable x cannot be equal to any of the values -5,0 since division by zero is not defined. Multiply both sides of the equation by 3x\left(x+5\right), the least common multiple of x,x+5,3.
3003x+15015-3x\times 100=2x\left(x+5\right)
Use the distributive property to multiply 3x+15 by 1001.
3003x+15015-300x=2x\left(x+5\right)
Multiply 3 and 100 to get 300.
3003x+15015-300x=2x^{2}+10x
Use the distributive property to multiply 2x by x+5.
3003x+15015-300x-2x^{2}=10x
Subtract 2x^{2} from both sides.
3003x+15015-300x-2x^{2}-10x=0
Subtract 10x from both sides.
2993x+15015-300x-2x^{2}=0
Combine 3003x and -10x to get 2993x.
2993x-300x-2x^{2}=-15015
Subtract 15015 from both sides. Anything subtracted from zero gives its negation.
2693x-2x^{2}=-15015
Combine 2993x and -300x to get 2693x.
-2x^{2}+2693x=-15015
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2x^{2}+2693x}{-2}=-\frac{15015}{-2}
Divide both sides by -2.
x^{2}+\frac{2693}{-2}x=-\frac{15015}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-\frac{2693}{2}x=-\frac{15015}{-2}
Divide 2693 by -2.
x^{2}-\frac{2693}{2}x=\frac{15015}{2}
Divide -15015 by -2.
x^{2}-\frac{2693}{2}x+\left(-\frac{2693}{4}\right)^{2}=\frac{15015}{2}+\left(-\frac{2693}{4}\right)^{2}
Divide -\frac{2693}{2}, the coefficient of the x term, by 2 to get -\frac{2693}{4}. Then add the square of -\frac{2693}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{2693}{2}x+\frac{7252249}{16}=\frac{15015}{2}+\frac{7252249}{16}
Square -\frac{2693}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{2693}{2}x+\frac{7252249}{16}=\frac{7372369}{16}
Add \frac{15015}{2} to \frac{7252249}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{2693}{4}\right)^{2}=\frac{7372369}{16}
Factor x^{2}-\frac{2693}{2}x+\frac{7252249}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{2693}{4}\right)^{2}}=\sqrt{\frac{7372369}{16}}
Take the square root of both sides of the equation.
x-\frac{2693}{4}=\frac{\sqrt{7372369}}{4} x-\frac{2693}{4}=-\frac{\sqrt{7372369}}{4}
Simplify.
x=\frac{\sqrt{7372369}+2693}{4} x=\frac{2693-\sqrt{7372369}}{4}
Add \frac{2693}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}