Solve for x
x = \frac{\sqrt{17481} + 159}{13} \approx 22.401210215
x = \frac{159 - \sqrt{17481}}{13} \approx 2.060328246
Graph
Share
Copied to clipboard
\frac{\left(\frac{100}{x}-\frac{3x}{x}\right)\times \frac{x-2}{120}}{\frac{2x}{120}}=\frac{2}{3}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{x}{x}.
\frac{\frac{100-3x}{x}\times \frac{x-2}{120}}{\frac{2x}{120}}=\frac{2}{3}
Since \frac{100}{x} and \frac{3x}{x} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{\left(100-3x\right)\left(x-2\right)}{x\times 120}}{\frac{2x}{120}}=\frac{2}{3}
Multiply \frac{100-3x}{x} times \frac{x-2}{120} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{\left(100-3x\right)\left(x-2\right)}{x\times 120}}{\frac{1}{60}x}=\frac{2}{3}
Divide 2x by 120 to get \frac{1}{60}x.
\frac{\left(100-3x\right)\left(x-2\right)}{x\times 120\times \frac{1}{60}x}=\frac{2}{3}
Express \frac{\frac{\left(100-3x\right)\left(x-2\right)}{x\times 120}}{\frac{1}{60}x} as a single fraction.
\frac{\left(100-3x\right)\left(x-2\right)}{x^{2}\times 120\times \frac{1}{60}}=\frac{2}{3}
Multiply x and x to get x^{2}.
\frac{\left(100-3x\right)\left(x-2\right)}{x^{2}\times 2}=\frac{2}{3}
Multiply 120 and \frac{1}{60} to get 2.
\frac{106x-200-3x^{2}}{x^{2}\times 2}=\frac{2}{3}
Use the distributive property to multiply 100-3x by x-2 and combine like terms.
\frac{106x-200-3x^{2}}{x^{2}\times 2}-\frac{2}{3}=0
Subtract \frac{2}{3} from both sides.
\frac{3\left(106x-200-3x^{2}\right)}{6x^{2}}-\frac{2\times 2x^{2}}{6x^{2}}=0
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x^{2}\times 2 and 3 is 6x^{2}. Multiply \frac{106x-200-3x^{2}}{x^{2}\times 2} times \frac{3}{3}. Multiply \frac{2}{3} times \frac{2x^{2}}{2x^{2}}.
\frac{3\left(106x-200-3x^{2}\right)-2\times 2x^{2}}{6x^{2}}=0
Since \frac{3\left(106x-200-3x^{2}\right)}{6x^{2}} and \frac{2\times 2x^{2}}{6x^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{318x-600-9x^{2}-4x^{2}}{6x^{2}}=0
Do the multiplications in 3\left(106x-200-3x^{2}\right)-2\times 2x^{2}.
\frac{318x-600-13x^{2}}{6x^{2}}=0
Combine like terms in 318x-600-9x^{2}-4x^{2}.
318x-600-13x^{2}=0
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 6x^{2}.
-13x^{2}+318x-600=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-318±\sqrt{318^{2}-4\left(-13\right)\left(-600\right)}}{2\left(-13\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -13 for a, 318 for b, and -600 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-318±\sqrt{101124-4\left(-13\right)\left(-600\right)}}{2\left(-13\right)}
Square 318.
x=\frac{-318±\sqrt{101124+52\left(-600\right)}}{2\left(-13\right)}
Multiply -4 times -13.
x=\frac{-318±\sqrt{101124-31200}}{2\left(-13\right)}
Multiply 52 times -600.
x=\frac{-318±\sqrt{69924}}{2\left(-13\right)}
Add 101124 to -31200.
x=\frac{-318±2\sqrt{17481}}{2\left(-13\right)}
Take the square root of 69924.
x=\frac{-318±2\sqrt{17481}}{-26}
Multiply 2 times -13.
x=\frac{2\sqrt{17481}-318}{-26}
Now solve the equation x=\frac{-318±2\sqrt{17481}}{-26} when ± is plus. Add -318 to 2\sqrt{17481}.
x=\frac{159-\sqrt{17481}}{13}
Divide -318+2\sqrt{17481} by -26.
x=\frac{-2\sqrt{17481}-318}{-26}
Now solve the equation x=\frac{-318±2\sqrt{17481}}{-26} when ± is minus. Subtract 2\sqrt{17481} from -318.
x=\frac{\sqrt{17481}+159}{13}
Divide -318-2\sqrt{17481} by -26.
x=\frac{159-\sqrt{17481}}{13} x=\frac{\sqrt{17481}+159}{13}
The equation is now solved.
\frac{\left(\frac{100}{x}-\frac{3x}{x}\right)\times \frac{x-2}{120}}{\frac{2x}{120}}=\frac{2}{3}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{x}{x}.
\frac{\frac{100-3x}{x}\times \frac{x-2}{120}}{\frac{2x}{120}}=\frac{2}{3}
Since \frac{100}{x} and \frac{3x}{x} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{\left(100-3x\right)\left(x-2\right)}{x\times 120}}{\frac{2x}{120}}=\frac{2}{3}
Multiply \frac{100-3x}{x} times \frac{x-2}{120} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{\left(100-3x\right)\left(x-2\right)}{x\times 120}}{\frac{1}{60}x}=\frac{2}{3}
Divide 2x by 120 to get \frac{1}{60}x.
\frac{\left(100-3x\right)\left(x-2\right)}{x\times 120\times \frac{1}{60}x}=\frac{2}{3}
Express \frac{\frac{\left(100-3x\right)\left(x-2\right)}{x\times 120}}{\frac{1}{60}x} as a single fraction.
\frac{\left(100-3x\right)\left(x-2\right)}{x^{2}\times 120\times \frac{1}{60}}=\frac{2}{3}
Multiply x and x to get x^{2}.
\frac{\left(100-3x\right)\left(x-2\right)}{x^{2}\times 2}=\frac{2}{3}
Multiply 120 and \frac{1}{60} to get 2.
\frac{106x-200-3x^{2}}{x^{2}\times 2}=\frac{2}{3}
Use the distributive property to multiply 100-3x by x-2 and combine like terms.
3\left(106x-200-3x^{2}\right)=4x^{2}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 6x^{2}, the least common multiple of x^{2}\times 2,3.
318x-600-9x^{2}=4x^{2}
Use the distributive property to multiply 3 by 106x-200-3x^{2}.
318x-600-9x^{2}-4x^{2}=0
Subtract 4x^{2} from both sides.
318x-600-13x^{2}=0
Combine -9x^{2} and -4x^{2} to get -13x^{2}.
318x-13x^{2}=600
Add 600 to both sides. Anything plus zero gives itself.
-13x^{2}+318x=600
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-13x^{2}+318x}{-13}=\frac{600}{-13}
Divide both sides by -13.
x^{2}+\frac{318}{-13}x=\frac{600}{-13}
Dividing by -13 undoes the multiplication by -13.
x^{2}-\frac{318}{13}x=\frac{600}{-13}
Divide 318 by -13.
x^{2}-\frac{318}{13}x=-\frac{600}{13}
Divide 600 by -13.
x^{2}-\frac{318}{13}x+\left(-\frac{159}{13}\right)^{2}=-\frac{600}{13}+\left(-\frac{159}{13}\right)^{2}
Divide -\frac{318}{13}, the coefficient of the x term, by 2 to get -\frac{159}{13}. Then add the square of -\frac{159}{13} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{318}{13}x+\frac{25281}{169}=-\frac{600}{13}+\frac{25281}{169}
Square -\frac{159}{13} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{318}{13}x+\frac{25281}{169}=\frac{17481}{169}
Add -\frac{600}{13} to \frac{25281}{169} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{159}{13}\right)^{2}=\frac{17481}{169}
Factor x^{2}-\frac{318}{13}x+\frac{25281}{169}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{159}{13}\right)^{2}}=\sqrt{\frac{17481}{169}}
Take the square root of both sides of the equation.
x-\frac{159}{13}=\frac{\sqrt{17481}}{13} x-\frac{159}{13}=-\frac{\sqrt{17481}}{13}
Simplify.
x=\frac{\sqrt{17481}+159}{13} x=\frac{159-\sqrt{17481}}{13}
Add \frac{159}{13} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}