Evaluate
\frac{\left(9m^{2}+20\right)\left(20-9m^{4}\right)}{36}
Expand
-\frac{9m^{6}}{4}-5m^{4}+5m^{2}+\frac{100}{9}
Share
Copied to clipboard
\left(\frac{10\times 2}{6}-\frac{3\times 3m^{4}}{6}\right)\left(\frac{3m^{2}}{2}+\frac{10}{3}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 2 is 6. Multiply \frac{10}{3} times \frac{2}{2}. Multiply \frac{3m^{4}}{2} times \frac{3}{3}.
\frac{10\times 2-3\times 3m^{4}}{6}\left(\frac{3m^{2}}{2}+\frac{10}{3}\right)
Since \frac{10\times 2}{6} and \frac{3\times 3m^{4}}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{20-9m^{4}}{6}\left(\frac{3m^{2}}{2}+\frac{10}{3}\right)
Do the multiplications in 10\times 2-3\times 3m^{4}.
\frac{20-9m^{4}}{6}\left(\frac{3\times 3m^{2}}{6}+\frac{10\times 2}{6}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 3 is 6. Multiply \frac{3m^{2}}{2} times \frac{3}{3}. Multiply \frac{10}{3} times \frac{2}{2}.
\frac{20-9m^{4}}{6}\times \frac{3\times 3m^{2}+10\times 2}{6}
Since \frac{3\times 3m^{2}}{6} and \frac{10\times 2}{6} have the same denominator, add them by adding their numerators.
\frac{20-9m^{4}}{6}\times \frac{9m^{2}+20}{6}
Do the multiplications in 3\times 3m^{2}+10\times 2.
\frac{\left(20-9m^{4}\right)\left(9m^{2}+20\right)}{6\times 6}
Multiply \frac{20-9m^{4}}{6} times \frac{9m^{2}+20}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(20-9m^{4}\right)\left(9m^{2}+20\right)}{36}
Multiply 6 and 6 to get 36.
\frac{180m^{2}+400-81m^{6}-180m^{4}}{36}
Use the distributive property to multiply 20-9m^{4} by 9m^{2}+20.
\left(\frac{10\times 2}{6}-\frac{3\times 3m^{4}}{6}\right)\left(\frac{3m^{2}}{2}+\frac{10}{3}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 2 is 6. Multiply \frac{10}{3} times \frac{2}{2}. Multiply \frac{3m^{4}}{2} times \frac{3}{3}.
\frac{10\times 2-3\times 3m^{4}}{6}\left(\frac{3m^{2}}{2}+\frac{10}{3}\right)
Since \frac{10\times 2}{6} and \frac{3\times 3m^{4}}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{20-9m^{4}}{6}\left(\frac{3m^{2}}{2}+\frac{10}{3}\right)
Do the multiplications in 10\times 2-3\times 3m^{4}.
\frac{20-9m^{4}}{6}\left(\frac{3\times 3m^{2}}{6}+\frac{10\times 2}{6}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 3 is 6. Multiply \frac{3m^{2}}{2} times \frac{3}{3}. Multiply \frac{10}{3} times \frac{2}{2}.
\frac{20-9m^{4}}{6}\times \frac{3\times 3m^{2}+10\times 2}{6}
Since \frac{3\times 3m^{2}}{6} and \frac{10\times 2}{6} have the same denominator, add them by adding their numerators.
\frac{20-9m^{4}}{6}\times \frac{9m^{2}+20}{6}
Do the multiplications in 3\times 3m^{2}+10\times 2.
\frac{\left(20-9m^{4}\right)\left(9m^{2}+20\right)}{6\times 6}
Multiply \frac{20-9m^{4}}{6} times \frac{9m^{2}+20}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(20-9m^{4}\right)\left(9m^{2}+20\right)}{36}
Multiply 6 and 6 to get 36.
\frac{180m^{2}+400-81m^{6}-180m^{4}}{36}
Use the distributive property to multiply 20-9m^{4} by 9m^{2}+20.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}