Evaluate
\frac{5b^{4}a^{6}}{9}
Differentiate w.r.t. b
\frac{20b^{3}a^{6}}{9}
Share
Copied to clipboard
\frac{-a^{2}\times 2ab}{2\times 3}\left(-\frac{5a^{3}b^{3}}{3}\right)
Multiply \frac{1a^{2}}{2} times -\frac{2ab}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{-aba^{2}}{3}\left(-\frac{5a^{3}b^{3}}{3}\right)
Cancel out 2 in both numerator and denominator.
\frac{-\left(-1\right)aba^{2}\times 5a^{3}b^{3}}{3\times 3}
Multiply \frac{-aba^{2}}{3} times -\frac{5a^{3}b^{3}}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{-\left(-1\right)a^{3}b\times 5a^{3}b^{3}}{3\times 3}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{-\left(-1\right)a^{6}b\times 5b^{3}}{3\times 3}
To multiply powers of the same base, add their exponents. Add 3 and 3 to get 6.
\frac{-\left(-1\right)a^{6}b^{4}\times 5}{3\times 3}
To multiply powers of the same base, add their exponents. Add 1 and 3 to get 4.
\frac{a^{6}b^{4}\times 5}{3\times 3}
Multiply -1 and -1 to get 1.
\frac{a^{6}b^{4}\times 5}{9}
Multiply 3 and 3 to get 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}