Evaluate
\frac{b+1}{1-b}
Expand
\frac{b+1}{1-b}
Share
Copied to clipboard
\left(\frac{\left(1-b\right)\left(-b+1\right)}{\left(b+1\right)\left(-b+1\right)}-\frac{\left(1+b\right)\left(b+1\right)}{\left(b+1\right)\left(-b+1\right)}+\frac{1+4b}{1-b^{2}}\right)\left(b^{2}+2b+1\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 1+b and 1-b is \left(b+1\right)\left(-b+1\right). Multiply \frac{1-b}{1+b} times \frac{-b+1}{-b+1}. Multiply \frac{1+b}{1-b} times \frac{b+1}{b+1}.
\left(\frac{\left(1-b\right)\left(-b+1\right)-\left(1+b\right)\left(b+1\right)}{\left(b+1\right)\left(-b+1\right)}+\frac{1+4b}{1-b^{2}}\right)\left(b^{2}+2b+1\right)
Since \frac{\left(1-b\right)\left(-b+1\right)}{\left(b+1\right)\left(-b+1\right)} and \frac{\left(1+b\right)\left(b+1\right)}{\left(b+1\right)\left(-b+1\right)} have the same denominator, subtract them by subtracting their numerators.
\left(\frac{1-b+b^{2}-b-b-1-b^{2}-b}{\left(b+1\right)\left(-b+1\right)}+\frac{1+4b}{1-b^{2}}\right)\left(b^{2}+2b+1\right)
Do the multiplications in \left(1-b\right)\left(-b+1\right)-\left(1+b\right)\left(b+1\right).
\left(\frac{-4b}{\left(b+1\right)\left(-b+1\right)}+\frac{1+4b}{1-b^{2}}\right)\left(b^{2}+2b+1\right)
Combine like terms in 1-b+b^{2}-b-b-1-b^{2}-b.
\left(\frac{-4b}{\left(b+1\right)\left(-b+1\right)}+\frac{1+4b}{\left(b-1\right)\left(-b-1\right)}\right)\left(b^{2}+2b+1\right)
Factor 1-b^{2}.
\left(\frac{-\left(-4\right)b}{\left(b-1\right)\left(b+1\right)}+\frac{-\left(1+4b\right)}{\left(b-1\right)\left(b+1\right)}\right)\left(b^{2}+2b+1\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(b+1\right)\left(-b+1\right) and \left(b-1\right)\left(-b-1\right) is \left(b-1\right)\left(b+1\right). Multiply \frac{-4b}{\left(b+1\right)\left(-b+1\right)} times \frac{-1}{-1}. Multiply \frac{1+4b}{\left(b-1\right)\left(-b-1\right)} times \frac{-1}{-1}.
\frac{-\left(-4\right)b-\left(1+4b\right)}{\left(b-1\right)\left(b+1\right)}\left(b^{2}+2b+1\right)
Since \frac{-\left(-4\right)b}{\left(b-1\right)\left(b+1\right)} and \frac{-\left(1+4b\right)}{\left(b-1\right)\left(b+1\right)} have the same denominator, add them by adding their numerators.
\frac{4b-1-4b}{\left(b-1\right)\left(b+1\right)}\left(b^{2}+2b+1\right)
Do the multiplications in -\left(-4\right)b-\left(1+4b\right).
\frac{-1}{\left(b-1\right)\left(b+1\right)}\left(b^{2}+2b+1\right)
Combine like terms in 4b-1-4b.
\frac{-\left(b^{2}+2b+1\right)}{\left(b-1\right)\left(b+1\right)}
Express \frac{-1}{\left(b-1\right)\left(b+1\right)}\left(b^{2}+2b+1\right) as a single fraction.
\frac{-\left(b+1\right)^{2}}{\left(b-1\right)\left(b+1\right)}
Factor the expressions that are not already factored.
\frac{-\left(b+1\right)}{b-1}
Cancel out b+1 in both numerator and denominator.
\frac{-b-1}{b-1}
Expand the expression.
\left(\frac{\left(1-b\right)\left(-b+1\right)}{\left(b+1\right)\left(-b+1\right)}-\frac{\left(1+b\right)\left(b+1\right)}{\left(b+1\right)\left(-b+1\right)}+\frac{1+4b}{1-b^{2}}\right)\left(b^{2}+2b+1\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 1+b and 1-b is \left(b+1\right)\left(-b+1\right). Multiply \frac{1-b}{1+b} times \frac{-b+1}{-b+1}. Multiply \frac{1+b}{1-b} times \frac{b+1}{b+1}.
\left(\frac{\left(1-b\right)\left(-b+1\right)-\left(1+b\right)\left(b+1\right)}{\left(b+1\right)\left(-b+1\right)}+\frac{1+4b}{1-b^{2}}\right)\left(b^{2}+2b+1\right)
Since \frac{\left(1-b\right)\left(-b+1\right)}{\left(b+1\right)\left(-b+1\right)} and \frac{\left(1+b\right)\left(b+1\right)}{\left(b+1\right)\left(-b+1\right)} have the same denominator, subtract them by subtracting their numerators.
\left(\frac{1-b+b^{2}-b-b-1-b^{2}-b}{\left(b+1\right)\left(-b+1\right)}+\frac{1+4b}{1-b^{2}}\right)\left(b^{2}+2b+1\right)
Do the multiplications in \left(1-b\right)\left(-b+1\right)-\left(1+b\right)\left(b+1\right).
\left(\frac{-4b}{\left(b+1\right)\left(-b+1\right)}+\frac{1+4b}{1-b^{2}}\right)\left(b^{2}+2b+1\right)
Combine like terms in 1-b+b^{2}-b-b-1-b^{2}-b.
\left(\frac{-4b}{\left(b+1\right)\left(-b+1\right)}+\frac{1+4b}{\left(b-1\right)\left(-b-1\right)}\right)\left(b^{2}+2b+1\right)
Factor 1-b^{2}.
\left(\frac{-\left(-4\right)b}{\left(b-1\right)\left(b+1\right)}+\frac{-\left(1+4b\right)}{\left(b-1\right)\left(b+1\right)}\right)\left(b^{2}+2b+1\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(b+1\right)\left(-b+1\right) and \left(b-1\right)\left(-b-1\right) is \left(b-1\right)\left(b+1\right). Multiply \frac{-4b}{\left(b+1\right)\left(-b+1\right)} times \frac{-1}{-1}. Multiply \frac{1+4b}{\left(b-1\right)\left(-b-1\right)} times \frac{-1}{-1}.
\frac{-\left(-4\right)b-\left(1+4b\right)}{\left(b-1\right)\left(b+1\right)}\left(b^{2}+2b+1\right)
Since \frac{-\left(-4\right)b}{\left(b-1\right)\left(b+1\right)} and \frac{-\left(1+4b\right)}{\left(b-1\right)\left(b+1\right)} have the same denominator, add them by adding their numerators.
\frac{4b-1-4b}{\left(b-1\right)\left(b+1\right)}\left(b^{2}+2b+1\right)
Do the multiplications in -\left(-4\right)b-\left(1+4b\right).
\frac{-1}{\left(b-1\right)\left(b+1\right)}\left(b^{2}+2b+1\right)
Combine like terms in 4b-1-4b.
\frac{-\left(b^{2}+2b+1\right)}{\left(b-1\right)\left(b+1\right)}
Express \frac{-1}{\left(b-1\right)\left(b+1\right)}\left(b^{2}+2b+1\right) as a single fraction.
\frac{-\left(b+1\right)^{2}}{\left(b-1\right)\left(b+1\right)}
Factor the expressions that are not already factored.
\frac{-\left(b+1\right)}{b-1}
Cancel out b+1 in both numerator and denominator.
\frac{-b-1}{b-1}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}