Evaluate
\frac{y}{x\left(x+y\right)}
Expand
\frac{y}{x\left(x+y\right)}
Share
Copied to clipboard
\frac{\frac{1}{y\left(x+y\right)}-\frac{6}{x\left(x+y\right)}+\frac{9y}{x^{3}+x^{2}y}}{\frac{x}{y^{2}}-\frac{6}{y}+\frac{9}{x}}
Factor xy+y^{2}. Factor x^{2}+xy.
\frac{\frac{x}{xy\left(x+y\right)}-\frac{6y}{xy\left(x+y\right)}+\frac{9y}{x^{3}+x^{2}y}}{\frac{x}{y^{2}}-\frac{6}{y}+\frac{9}{x}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y\left(x+y\right) and x\left(x+y\right) is xy\left(x+y\right). Multiply \frac{1}{y\left(x+y\right)} times \frac{x}{x}. Multiply \frac{6}{x\left(x+y\right)} times \frac{y}{y}.
\frac{\frac{x-6y}{xy\left(x+y\right)}+\frac{9y}{x^{3}+x^{2}y}}{\frac{x}{y^{2}}-\frac{6}{y}+\frac{9}{x}}
Since \frac{x}{xy\left(x+y\right)} and \frac{6y}{xy\left(x+y\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x-6y}{xy\left(x+y\right)}+\frac{9y}{\left(x+y\right)x^{2}}}{\frac{x}{y^{2}}-\frac{6}{y}+\frac{9}{x}}
Factor x^{3}+x^{2}y.
\frac{\frac{\left(x-6y\right)x}{y\left(x+y\right)x^{2}}+\frac{9yy}{y\left(x+y\right)x^{2}}}{\frac{x}{y^{2}}-\frac{6}{y}+\frac{9}{x}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of xy\left(x+y\right) and \left(x+y\right)x^{2} is y\left(x+y\right)x^{2}. Multiply \frac{x-6y}{xy\left(x+y\right)} times \frac{x}{x}. Multiply \frac{9y}{\left(x+y\right)x^{2}} times \frac{y}{y}.
\frac{\frac{\left(x-6y\right)x+9yy}{y\left(x+y\right)x^{2}}}{\frac{x}{y^{2}}-\frac{6}{y}+\frac{9}{x}}
Since \frac{\left(x-6y\right)x}{y\left(x+y\right)x^{2}} and \frac{9yy}{y\left(x+y\right)x^{2}} have the same denominator, add them by adding their numerators.
\frac{\frac{x^{2}-6yx+9y^{2}}{y\left(x+y\right)x^{2}}}{\frac{x}{y^{2}}-\frac{6}{y}+\frac{9}{x}}
Do the multiplications in \left(x-6y\right)x+9yy.
\frac{\frac{x^{2}-6yx+9y^{2}}{y\left(x+y\right)x^{2}}}{\frac{x}{y^{2}}-\frac{6y}{y^{2}}+\frac{9}{x}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y^{2} and y is y^{2}. Multiply \frac{6}{y} times \frac{y}{y}.
\frac{\frac{x^{2}-6yx+9y^{2}}{y\left(x+y\right)x^{2}}}{\frac{x-6y}{y^{2}}+\frac{9}{x}}
Since \frac{x}{y^{2}} and \frac{6y}{y^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}-6yx+9y^{2}}{y\left(x+y\right)x^{2}}}{\frac{\left(x-6y\right)x}{xy^{2}}+\frac{9y^{2}}{xy^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y^{2} and x is xy^{2}. Multiply \frac{x-6y}{y^{2}} times \frac{x}{x}. Multiply \frac{9}{x} times \frac{y^{2}}{y^{2}}.
\frac{\frac{x^{2}-6yx+9y^{2}}{y\left(x+y\right)x^{2}}}{\frac{\left(x-6y\right)x+9y^{2}}{xy^{2}}}
Since \frac{\left(x-6y\right)x}{xy^{2}} and \frac{9y^{2}}{xy^{2}} have the same denominator, add them by adding their numerators.
\frac{\frac{x^{2}-6yx+9y^{2}}{y\left(x+y\right)x^{2}}}{\frac{x^{2}-6yx+9y^{2}}{xy^{2}}}
Do the multiplications in \left(x-6y\right)x+9y^{2}.
\frac{\left(x^{2}-6yx+9y^{2}\right)xy^{2}}{y\left(x+y\right)x^{2}\left(x^{2}-6yx+9y^{2}\right)}
Divide \frac{x^{2}-6yx+9y^{2}}{y\left(x+y\right)x^{2}} by \frac{x^{2}-6yx+9y^{2}}{xy^{2}} by multiplying \frac{x^{2}-6yx+9y^{2}}{y\left(x+y\right)x^{2}} by the reciprocal of \frac{x^{2}-6yx+9y^{2}}{xy^{2}}.
\frac{y}{x\left(x+y\right)}
Cancel out xy\left(x^{2}-6xy+9y^{2}\right) in both numerator and denominator.
\frac{y}{x^{2}+xy}
Use the distributive property to multiply x by x+y.
\frac{\frac{1}{y\left(x+y\right)}-\frac{6}{x\left(x+y\right)}+\frac{9y}{x^{3}+x^{2}y}}{\frac{x}{y^{2}}-\frac{6}{y}+\frac{9}{x}}
Factor xy+y^{2}. Factor x^{2}+xy.
\frac{\frac{x}{xy\left(x+y\right)}-\frac{6y}{xy\left(x+y\right)}+\frac{9y}{x^{3}+x^{2}y}}{\frac{x}{y^{2}}-\frac{6}{y}+\frac{9}{x}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y\left(x+y\right) and x\left(x+y\right) is xy\left(x+y\right). Multiply \frac{1}{y\left(x+y\right)} times \frac{x}{x}. Multiply \frac{6}{x\left(x+y\right)} times \frac{y}{y}.
\frac{\frac{x-6y}{xy\left(x+y\right)}+\frac{9y}{x^{3}+x^{2}y}}{\frac{x}{y^{2}}-\frac{6}{y}+\frac{9}{x}}
Since \frac{x}{xy\left(x+y\right)} and \frac{6y}{xy\left(x+y\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x-6y}{xy\left(x+y\right)}+\frac{9y}{\left(x+y\right)x^{2}}}{\frac{x}{y^{2}}-\frac{6}{y}+\frac{9}{x}}
Factor x^{3}+x^{2}y.
\frac{\frac{\left(x-6y\right)x}{y\left(x+y\right)x^{2}}+\frac{9yy}{y\left(x+y\right)x^{2}}}{\frac{x}{y^{2}}-\frac{6}{y}+\frac{9}{x}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of xy\left(x+y\right) and \left(x+y\right)x^{2} is y\left(x+y\right)x^{2}. Multiply \frac{x-6y}{xy\left(x+y\right)} times \frac{x}{x}. Multiply \frac{9y}{\left(x+y\right)x^{2}} times \frac{y}{y}.
\frac{\frac{\left(x-6y\right)x+9yy}{y\left(x+y\right)x^{2}}}{\frac{x}{y^{2}}-\frac{6}{y}+\frac{9}{x}}
Since \frac{\left(x-6y\right)x}{y\left(x+y\right)x^{2}} and \frac{9yy}{y\left(x+y\right)x^{2}} have the same denominator, add them by adding their numerators.
\frac{\frac{x^{2}-6yx+9y^{2}}{y\left(x+y\right)x^{2}}}{\frac{x}{y^{2}}-\frac{6}{y}+\frac{9}{x}}
Do the multiplications in \left(x-6y\right)x+9yy.
\frac{\frac{x^{2}-6yx+9y^{2}}{y\left(x+y\right)x^{2}}}{\frac{x}{y^{2}}-\frac{6y}{y^{2}}+\frac{9}{x}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y^{2} and y is y^{2}. Multiply \frac{6}{y} times \frac{y}{y}.
\frac{\frac{x^{2}-6yx+9y^{2}}{y\left(x+y\right)x^{2}}}{\frac{x-6y}{y^{2}}+\frac{9}{x}}
Since \frac{x}{y^{2}} and \frac{6y}{y^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}-6yx+9y^{2}}{y\left(x+y\right)x^{2}}}{\frac{\left(x-6y\right)x}{xy^{2}}+\frac{9y^{2}}{xy^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y^{2} and x is xy^{2}. Multiply \frac{x-6y}{y^{2}} times \frac{x}{x}. Multiply \frac{9}{x} times \frac{y^{2}}{y^{2}}.
\frac{\frac{x^{2}-6yx+9y^{2}}{y\left(x+y\right)x^{2}}}{\frac{\left(x-6y\right)x+9y^{2}}{xy^{2}}}
Since \frac{\left(x-6y\right)x}{xy^{2}} and \frac{9y^{2}}{xy^{2}} have the same denominator, add them by adding their numerators.
\frac{\frac{x^{2}-6yx+9y^{2}}{y\left(x+y\right)x^{2}}}{\frac{x^{2}-6yx+9y^{2}}{xy^{2}}}
Do the multiplications in \left(x-6y\right)x+9y^{2}.
\frac{\left(x^{2}-6yx+9y^{2}\right)xy^{2}}{y\left(x+y\right)x^{2}\left(x^{2}-6yx+9y^{2}\right)}
Divide \frac{x^{2}-6yx+9y^{2}}{y\left(x+y\right)x^{2}} by \frac{x^{2}-6yx+9y^{2}}{xy^{2}} by multiplying \frac{x^{2}-6yx+9y^{2}}{y\left(x+y\right)x^{2}} by the reciprocal of \frac{x^{2}-6yx+9y^{2}}{xy^{2}}.
\frac{y}{x\left(x+y\right)}
Cancel out xy\left(x^{2}-6xy+9y^{2}\right) in both numerator and denominator.
\frac{y}{x^{2}+xy}
Use the distributive property to multiply x by x+y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}