Evaluate
\frac{\left(x+2\right)\left(x-y+5\right)}{5x\left(x-y\right)}
Expand
\frac{-x^{2}+xy-7x+2y-10}{5x\left(y-x\right)}
Share
Copied to clipboard
\frac{1}{x-y}+\frac{2}{x\left(x-y\right)}+\frac{x+2}{5x}
Factor x^{2}-xy.
\frac{x}{x\left(x-y\right)}+\frac{2}{x\left(x-y\right)}+\frac{x+2}{5x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-y and x\left(x-y\right) is x\left(x-y\right). Multiply \frac{1}{x-y} times \frac{x}{x}.
\frac{x+2}{x\left(x-y\right)}+\frac{x+2}{5x}
Since \frac{x}{x\left(x-y\right)} and \frac{2}{x\left(x-y\right)} have the same denominator, add them by adding their numerators.
\frac{5\left(x+2\right)}{5x\left(x-y\right)}+\frac{\left(x+2\right)\left(x-y\right)}{5x\left(x-y\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x-y\right) and 5x is 5x\left(x-y\right). Multiply \frac{x+2}{x\left(x-y\right)} times \frac{5}{5}. Multiply \frac{x+2}{5x} times \frac{x-y}{x-y}.
\frac{5\left(x+2\right)+\left(x+2\right)\left(x-y\right)}{5x\left(x-y\right)}
Since \frac{5\left(x+2\right)}{5x\left(x-y\right)} and \frac{\left(x+2\right)\left(x-y\right)}{5x\left(x-y\right)} have the same denominator, add them by adding their numerators.
\frac{5x+10+x^{2}-xy+2x-2y}{5x\left(x-y\right)}
Do the multiplications in 5\left(x+2\right)+\left(x+2\right)\left(x-y\right).
\frac{7x+10+x^{2}-xy-2y}{5x\left(x-y\right)}
Combine like terms in 5x+10+x^{2}-xy+2x-2y.
\frac{7x+10+x^{2}-xy-2y}{5x^{2}-5xy}
Expand 5x\left(x-y\right).
\frac{1}{x-y}+\frac{2}{x\left(x-y\right)}+\frac{x+2}{5x}
Factor x^{2}-xy.
\frac{x}{x\left(x-y\right)}+\frac{2}{x\left(x-y\right)}+\frac{x+2}{5x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-y and x\left(x-y\right) is x\left(x-y\right). Multiply \frac{1}{x-y} times \frac{x}{x}.
\frac{x+2}{x\left(x-y\right)}+\frac{x+2}{5x}
Since \frac{x}{x\left(x-y\right)} and \frac{2}{x\left(x-y\right)} have the same denominator, add them by adding their numerators.
\frac{5\left(x+2\right)}{5x\left(x-y\right)}+\frac{\left(x+2\right)\left(x-y\right)}{5x\left(x-y\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x-y\right) and 5x is 5x\left(x-y\right). Multiply \frac{x+2}{x\left(x-y\right)} times \frac{5}{5}. Multiply \frac{x+2}{5x} times \frac{x-y}{x-y}.
\frac{5\left(x+2\right)+\left(x+2\right)\left(x-y\right)}{5x\left(x-y\right)}
Since \frac{5\left(x+2\right)}{5x\left(x-y\right)} and \frac{\left(x+2\right)\left(x-y\right)}{5x\left(x-y\right)} have the same denominator, add them by adding their numerators.
\frac{5x+10+x^{2}-xy+2x-2y}{5x\left(x-y\right)}
Do the multiplications in 5\left(x+2\right)+\left(x+2\right)\left(x-y\right).
\frac{7x+10+x^{2}-xy-2y}{5x\left(x-y\right)}
Combine like terms in 5x+10+x^{2}-xy+2x-2y.
\frac{7x+10+x^{2}-xy-2y}{5x^{2}-5xy}
Expand 5x\left(x-y\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}