Evaluate
\frac{\left(x+4y\right)\left(2x+y-6\right)}{4y\left(x-3\right)}
Expand
\frac{2x^{2}+9xy-6x+4y^{2}-24y}{4y\left(x-3\right)}
Share
Copied to clipboard
\left(\frac{y}{y\left(x-3\right)}+\frac{2\left(x-3\right)}{y\left(x-3\right)}\right)\left(\frac{x}{4}+y\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-3 and y is y\left(x-3\right). Multiply \frac{1}{x-3} times \frac{y}{y}. Multiply \frac{2}{y} times \frac{x-3}{x-3}.
\frac{y+2\left(x-3\right)}{y\left(x-3\right)}\left(\frac{x}{4}+y\right)
Since \frac{y}{y\left(x-3\right)} and \frac{2\left(x-3\right)}{y\left(x-3\right)} have the same denominator, add them by adding their numerators.
\frac{y+2x-6}{y\left(x-3\right)}\left(\frac{x}{4}+y\right)
Do the multiplications in y+2\left(x-3\right).
\frac{y+2x-6}{y\left(x-3\right)}\left(\frac{x}{4}+\frac{4y}{4}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply y times \frac{4}{4}.
\frac{y+2x-6}{y\left(x-3\right)}\times \frac{x+4y}{4}
Since \frac{x}{4} and \frac{4y}{4} have the same denominator, add them by adding their numerators.
\frac{\left(y+2x-6\right)\left(x+4y\right)}{y\left(x-3\right)\times 4}
Multiply \frac{y+2x-6}{y\left(x-3\right)} times \frac{x+4y}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{yx+4y^{2}+2x^{2}+8xy-6x-24y}{y\left(x-3\right)\times 4}
Apply the distributive property by multiplying each term of y+2x-6 by each term of x+4y.
\frac{9yx+4y^{2}+2x^{2}-6x-24y}{y\left(x-3\right)\times 4}
Combine yx and 8xy to get 9yx.
\frac{9yx+4y^{2}+2x^{2}-6x-24y}{\left(yx-3y\right)\times 4}
Use the distributive property to multiply y by x-3.
\frac{9yx+4y^{2}+2x^{2}-6x-24y}{4yx-12y}
Use the distributive property to multiply yx-3y by 4.
\left(\frac{y}{y\left(x-3\right)}+\frac{2\left(x-3\right)}{y\left(x-3\right)}\right)\left(\frac{x}{4}+y\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-3 and y is y\left(x-3\right). Multiply \frac{1}{x-3} times \frac{y}{y}. Multiply \frac{2}{y} times \frac{x-3}{x-3}.
\frac{y+2\left(x-3\right)}{y\left(x-3\right)}\left(\frac{x}{4}+y\right)
Since \frac{y}{y\left(x-3\right)} and \frac{2\left(x-3\right)}{y\left(x-3\right)} have the same denominator, add them by adding their numerators.
\frac{y+2x-6}{y\left(x-3\right)}\left(\frac{x}{4}+y\right)
Do the multiplications in y+2\left(x-3\right).
\frac{y+2x-6}{y\left(x-3\right)}\left(\frac{x}{4}+\frac{4y}{4}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply y times \frac{4}{4}.
\frac{y+2x-6}{y\left(x-3\right)}\times \frac{x+4y}{4}
Since \frac{x}{4} and \frac{4y}{4} have the same denominator, add them by adding their numerators.
\frac{\left(y+2x-6\right)\left(x+4y\right)}{y\left(x-3\right)\times 4}
Multiply \frac{y+2x-6}{y\left(x-3\right)} times \frac{x+4y}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{yx+4y^{2}+2x^{2}+8xy-6x-24y}{y\left(x-3\right)\times 4}
Apply the distributive property by multiplying each term of y+2x-6 by each term of x+4y.
\frac{9yx+4y^{2}+2x^{2}-6x-24y}{y\left(x-3\right)\times 4}
Combine yx and 8xy to get 9yx.
\frac{9yx+4y^{2}+2x^{2}-6x-24y}{\left(yx-3y\right)\times 4}
Use the distributive property to multiply y by x-3.
\frac{9yx+4y^{2}+2x^{2}-6x-24y}{4yx-12y}
Use the distributive property to multiply yx-3y by 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}