Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{x+2}{\left(x-2\right)\left(x+2\right)}+\frac{x-2}{\left(x-2\right)\left(x+2\right)}}{\frac{x^{2}-2x+1}{x^{2}-4}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-2 and x+2 is \left(x-2\right)\left(x+2\right). Multiply \frac{1}{x-2} times \frac{x+2}{x+2}. Multiply \frac{1}{x+2} times \frac{x-2}{x-2}.
\frac{\frac{x+2+x-2}{\left(x-2\right)\left(x+2\right)}}{\frac{x^{2}-2x+1}{x^{2}-4}}
Since \frac{x+2}{\left(x-2\right)\left(x+2\right)} and \frac{x-2}{\left(x-2\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{2x}{\left(x-2\right)\left(x+2\right)}}{\frac{x^{2}-2x+1}{x^{2}-4}}
Combine like terms in x+2+x-2.
\frac{2x\left(x^{2}-4\right)}{\left(x-2\right)\left(x+2\right)\left(x^{2}-2x+1\right)}
Divide \frac{2x}{\left(x-2\right)\left(x+2\right)} by \frac{x^{2}-2x+1}{x^{2}-4} by multiplying \frac{2x}{\left(x-2\right)\left(x+2\right)} by the reciprocal of \frac{x^{2}-2x+1}{x^{2}-4}.
\frac{2x\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)\left(x-1\right)^{2}}
Factor the expressions that are not already factored.
\frac{2x}{\left(x-1\right)^{2}}
Cancel out \left(x-2\right)\left(x+2\right) in both numerator and denominator.
\frac{2x}{x^{2}-2x+1}
Expand the expression.
\frac{\frac{x+2}{\left(x-2\right)\left(x+2\right)}+\frac{x-2}{\left(x-2\right)\left(x+2\right)}}{\frac{x^{2}-2x+1}{x^{2}-4}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-2 and x+2 is \left(x-2\right)\left(x+2\right). Multiply \frac{1}{x-2} times \frac{x+2}{x+2}. Multiply \frac{1}{x+2} times \frac{x-2}{x-2}.
\frac{\frac{x+2+x-2}{\left(x-2\right)\left(x+2\right)}}{\frac{x^{2}-2x+1}{x^{2}-4}}
Since \frac{x+2}{\left(x-2\right)\left(x+2\right)} and \frac{x-2}{\left(x-2\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{2x}{\left(x-2\right)\left(x+2\right)}}{\frac{x^{2}-2x+1}{x^{2}-4}}
Combine like terms in x+2+x-2.
\frac{2x\left(x^{2}-4\right)}{\left(x-2\right)\left(x+2\right)\left(x^{2}-2x+1\right)}
Divide \frac{2x}{\left(x-2\right)\left(x+2\right)} by \frac{x^{2}-2x+1}{x^{2}-4} by multiplying \frac{2x}{\left(x-2\right)\left(x+2\right)} by the reciprocal of \frac{x^{2}-2x+1}{x^{2}-4}.
\frac{2x\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)\left(x-1\right)^{2}}
Factor the expressions that are not already factored.
\frac{2x}{\left(x-1\right)^{2}}
Cancel out \left(x-2\right)\left(x+2\right) in both numerator and denominator.
\frac{2x}{x^{2}-2x+1}
Expand the expression.