Evaluate
\frac{\left(y-x\right)\left(x+y-1\right)}{xy}
Expand
\frac{-x^{2}+x+y^{2}-y}{xy}
Share
Copied to clipboard
\frac{1}{xy}\left(x-y\right)+\left(\frac{1}{x}-\frac{1}{y}\right)\left(x+y\right)
Multiply \frac{1}{x} times \frac{1}{y} by multiplying numerator times numerator and denominator times denominator.
\frac{x-y}{xy}+\left(\frac{1}{x}-\frac{1}{y}\right)\left(x+y\right)
Express \frac{1}{xy}\left(x-y\right) as a single fraction.
\frac{x-y}{xy}+\left(\frac{y}{xy}-\frac{x}{xy}\right)\left(x+y\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x and y is xy. Multiply \frac{1}{x} times \frac{y}{y}. Multiply \frac{1}{y} times \frac{x}{x}.
\frac{x-y}{xy}+\frac{y-x}{xy}\left(x+y\right)
Since \frac{y}{xy} and \frac{x}{xy} have the same denominator, subtract them by subtracting their numerators.
\frac{x-y}{xy}+\frac{\left(y-x\right)\left(x+y\right)}{xy}
Express \frac{y-x}{xy}\left(x+y\right) as a single fraction.
\frac{x-y+\left(y-x\right)\left(x+y\right)}{xy}
Since \frac{x-y}{xy} and \frac{\left(y-x\right)\left(x+y\right)}{xy} have the same denominator, add them by adding their numerators.
\frac{x-y+yx+y^{2}-x^{2}-xy}{xy}
Do the multiplications in x-y+\left(y-x\right)\left(x+y\right).
\frac{x-y+y^{2}-x^{2}}{xy}
Combine like terms in x-y+yx+y^{2}-x^{2}-xy.
\frac{1}{xy}\left(x-y\right)+\left(\frac{1}{x}-\frac{1}{y}\right)\left(x+y\right)
Multiply \frac{1}{x} times \frac{1}{y} by multiplying numerator times numerator and denominator times denominator.
\frac{x-y}{xy}+\left(\frac{1}{x}-\frac{1}{y}\right)\left(x+y\right)
Express \frac{1}{xy}\left(x-y\right) as a single fraction.
\frac{x-y}{xy}+\left(\frac{y}{xy}-\frac{x}{xy}\right)\left(x+y\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x and y is xy. Multiply \frac{1}{x} times \frac{y}{y}. Multiply \frac{1}{y} times \frac{x}{x}.
\frac{x-y}{xy}+\frac{y-x}{xy}\left(x+y\right)
Since \frac{y}{xy} and \frac{x}{xy} have the same denominator, subtract them by subtracting their numerators.
\frac{x-y}{xy}+\frac{\left(y-x\right)\left(x+y\right)}{xy}
Express \frac{y-x}{xy}\left(x+y\right) as a single fraction.
\frac{x-y+\left(y-x\right)\left(x+y\right)}{xy}
Since \frac{x-y}{xy} and \frac{\left(y-x\right)\left(x+y\right)}{xy} have the same denominator, add them by adding their numerators.
\frac{x-y+yx+y^{2}-x^{2}-xy}{xy}
Do the multiplications in x-y+\left(y-x\right)\left(x+y\right).
\frac{x-y+y^{2}-x^{2}}{xy}
Combine like terms in x-y+yx+y^{2}-x^{2}-xy.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}