Solve for x
x=-2
x=2
Graph
Share
Copied to clipboard
\left(2\times \frac{1}{x}\right)^{2}=1
Combine \frac{1}{x} and \frac{1}{x} to get 2\times \frac{1}{x}.
\left(\frac{2}{x}\right)^{2}=1
Express 2\times \frac{1}{x} as a single fraction.
\frac{2^{2}}{x^{2}}=1
To raise \frac{2}{x} to a power, raise both numerator and denominator to the power and then divide.
\frac{4}{x^{2}}=1
Calculate 2 to the power of 2 and get 4.
4=x^{2}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x^{2}.
x^{2}=4
Swap sides so that all variable terms are on the left hand side.
x=2 x=-2
Take the square root of both sides of the equation.
\left(2\times \frac{1}{x}\right)^{2}=1
Combine \frac{1}{x} and \frac{1}{x} to get 2\times \frac{1}{x}.
\left(\frac{2}{x}\right)^{2}=1
Express 2\times \frac{1}{x} as a single fraction.
\frac{2^{2}}{x^{2}}=1
To raise \frac{2}{x} to a power, raise both numerator and denominator to the power and then divide.
\frac{4}{x^{2}}=1
Calculate 2 to the power of 2 and get 4.
\frac{4}{x^{2}}-1=0
Subtract 1 from both sides.
\frac{4}{x^{2}}-\frac{x^{2}}{x^{2}}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x^{2}}{x^{2}}.
\frac{4-x^{2}}{x^{2}}=0
Since \frac{4}{x^{2}} and \frac{x^{2}}{x^{2}} have the same denominator, subtract them by subtracting their numerators.
4-x^{2}=0
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x^{2}.
-x^{2}+4=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-1\right)\times 4}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 0 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-1\right)\times 4}}{2\left(-1\right)}
Square 0.
x=\frac{0±\sqrt{4\times 4}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{0±\sqrt{16}}{2\left(-1\right)}
Multiply 4 times 4.
x=\frac{0±4}{2\left(-1\right)}
Take the square root of 16.
x=\frac{0±4}{-2}
Multiply 2 times -1.
x=-2
Now solve the equation x=\frac{0±4}{-2} when ± is plus. Divide 4 by -2.
x=2
Now solve the equation x=\frac{0±4}{-2} when ± is minus. Divide -4 by -2.
x=-2 x=2
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}