Solve for x
x=4
Graph
Quiz
Linear Equation
5 problems similar to:
( \frac { 1 } { x } + \frac { 1 } { 12 } ) ^ { - 1 } + 1 = 4
Share
Copied to clipboard
\left(\frac{12}{12x}+\frac{x}{12x}\right)^{-1}+1=4
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x and 12 is 12x. Multiply \frac{1}{x} times \frac{12}{12}. Multiply \frac{1}{12} times \frac{x}{x}.
\left(\frac{12+x}{12x}\right)^{-1}+1=4
Since \frac{12}{12x} and \frac{x}{12x} have the same denominator, add them by adding their numerators.
\frac{\left(12+x\right)^{-1}}{\left(12x\right)^{-1}}+1=4
To raise \frac{12+x}{12x} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(12+x\right)^{-1}}{\left(12x\right)^{-1}}+\frac{\left(12x\right)^{-1}}{\left(12x\right)^{-1}}=4
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{\left(12x\right)^{-1}}{\left(12x\right)^{-1}}.
\frac{\left(12+x\right)^{-1}+\left(12x\right)^{-1}}{\left(12x\right)^{-1}}=4
Since \frac{\left(12+x\right)^{-1}}{\left(12x\right)^{-1}} and \frac{\left(12x\right)^{-1}}{\left(12x\right)^{-1}} have the same denominator, add them by adding their numerators.
\frac{\left(12+x\right)^{-1}+12^{-1}x^{-1}}{\left(12x\right)^{-1}}=4
Expand \left(12x\right)^{-1}.
\frac{\left(12+x\right)^{-1}+\frac{1}{12}x^{-1}}{\left(12x\right)^{-1}}=4
Calculate 12 to the power of -1 and get \frac{1}{12}.
\frac{\left(12+x\right)^{-1}+\frac{1}{12}x^{-1}}{12^{-1}x^{-1}}=4
Expand \left(12x\right)^{-1}.
\frac{\left(12+x\right)^{-1}+\frac{1}{12}x^{-1}}{\frac{1}{12}x^{-1}}=4
Calculate 12 to the power of -1 and get \frac{1}{12}.
\frac{\frac{1}{12}\left(12\times \frac{1}{x+12}+\frac{1}{x}\right)}{\frac{1}{12}\times \frac{1}{x}}=4
Factor the expressions that are not already factored in \frac{\left(12+x\right)^{-1}+\frac{1}{12}x^{-1}}{\frac{1}{12}x^{-1}}.
\frac{12\times \frac{1}{x+12}+\frac{1}{x}}{\left(\frac{1}{12}\right)^{0}\times \frac{1}{x}}=4
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{\frac{12}{x+12}+\frac{1}{x}}{\left(\frac{1}{12}\right)^{0}\times \frac{1}{x}}=4
Express 12\times \frac{1}{x+12} as a single fraction.
\frac{\frac{12x}{x\left(x+12\right)}+\frac{x+12}{x\left(x+12\right)}}{\left(\frac{1}{12}\right)^{0}\times \frac{1}{x}}=4
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+12 and x is x\left(x+12\right). Multiply \frac{12}{x+12} times \frac{x}{x}. Multiply \frac{1}{x} times \frac{x+12}{x+12}.
\frac{\frac{12x+x+12}{x\left(x+12\right)}}{\left(\frac{1}{12}\right)^{0}\times \frac{1}{x}}=4
Since \frac{12x}{x\left(x+12\right)} and \frac{x+12}{x\left(x+12\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{13x+12}{x\left(x+12\right)}}{\left(\frac{1}{12}\right)^{0}\times \frac{1}{x}}=4
Combine like terms in 12x+x+12.
\frac{\frac{13x+12}{x\left(x+12\right)}}{1\times \frac{1}{x}}=4
Calculate \frac{1}{12} to the power of 0 and get 1.
\frac{\frac{13x+12}{x\left(x+12\right)}}{\frac{1}{x}}=4
Express 1\times \frac{1}{x} as a single fraction.
\frac{\left(13x+12\right)x}{x\left(x+12\right)}=4
Variable x cannot be equal to 0 since division by zero is not defined. Divide \frac{13x+12}{x\left(x+12\right)} by \frac{1}{x} by multiplying \frac{13x+12}{x\left(x+12\right)} by the reciprocal of \frac{1}{x}.
\left(13x+12\right)x=4x\left(x+12\right)
Variable x cannot be equal to any of the values -12,0 since division by zero is not defined. Multiply both sides of the equation by x\left(x+12\right).
x\left(13x+12\right)=4x\left(x+12\right)
Reorder the terms.
13x^{2}+12x=4x\left(x+12\right)
Use the distributive property to multiply x by 13x+12.
13x^{2}+12x=4x^{2}+48x
Use the distributive property to multiply 4x by x+12.
13x^{2}+12x-4x^{2}=48x
Subtract 4x^{2} from both sides.
9x^{2}+12x=48x
Combine 13x^{2} and -4x^{2} to get 9x^{2}.
9x^{2}+12x-48x=0
Subtract 48x from both sides.
9x^{2}-36x=0
Combine 12x and -48x to get -36x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}