Evaluate
\frac{1-x-x^{2}}{x\left(x-1\right)}
Expand
\frac{1-x-x^{2}}{x\left(x-1\right)}
Graph
Share
Copied to clipboard
\frac{\frac{1}{x\left(x+1\right)}-1}{\frac{x^{2}-1}{x^{2}+2x+1}}
Factor x^{2}+x.
\frac{\frac{1}{x\left(x+1\right)}-\frac{x\left(x+1\right)}{x\left(x+1\right)}}{\frac{x^{2}-1}{x^{2}+2x+1}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x\left(x+1\right)}{x\left(x+1\right)}.
\frac{\frac{1-x\left(x+1\right)}{x\left(x+1\right)}}{\frac{x^{2}-1}{x^{2}+2x+1}}
Since \frac{1}{x\left(x+1\right)} and \frac{x\left(x+1\right)}{x\left(x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{1-x^{2}-x}{x\left(x+1\right)}}{\frac{x^{2}-1}{x^{2}+2x+1}}
Do the multiplications in 1-x\left(x+1\right).
\frac{\frac{1-x^{2}-x}{x\left(x+1\right)}}{\frac{\left(x-1\right)\left(x+1\right)}{\left(x+1\right)^{2}}}
Factor the expressions that are not already factored in \frac{x^{2}-1}{x^{2}+2x+1}.
\frac{\frac{1-x^{2}-x}{x\left(x+1\right)}}{\frac{x-1}{x+1}}
Cancel out x+1 in both numerator and denominator.
\frac{\left(1-x^{2}-x\right)\left(x+1\right)}{x\left(x+1\right)\left(x-1\right)}
Divide \frac{1-x^{2}-x}{x\left(x+1\right)} by \frac{x-1}{x+1} by multiplying \frac{1-x^{2}-x}{x\left(x+1\right)} by the reciprocal of \frac{x-1}{x+1}.
\frac{-x^{2}-x+1}{x\left(x-1\right)}
Cancel out x+1 in both numerator and denominator.
\frac{-x^{2}-x+1}{x^{2}-x}
Use the distributive property to multiply x by x-1.
\frac{\frac{1}{x\left(x+1\right)}-1}{\frac{x^{2}-1}{x^{2}+2x+1}}
Factor x^{2}+x.
\frac{\frac{1}{x\left(x+1\right)}-\frac{x\left(x+1\right)}{x\left(x+1\right)}}{\frac{x^{2}-1}{x^{2}+2x+1}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x\left(x+1\right)}{x\left(x+1\right)}.
\frac{\frac{1-x\left(x+1\right)}{x\left(x+1\right)}}{\frac{x^{2}-1}{x^{2}+2x+1}}
Since \frac{1}{x\left(x+1\right)} and \frac{x\left(x+1\right)}{x\left(x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{1-x^{2}-x}{x\left(x+1\right)}}{\frac{x^{2}-1}{x^{2}+2x+1}}
Do the multiplications in 1-x\left(x+1\right).
\frac{\frac{1-x^{2}-x}{x\left(x+1\right)}}{\frac{\left(x-1\right)\left(x+1\right)}{\left(x+1\right)^{2}}}
Factor the expressions that are not already factored in \frac{x^{2}-1}{x^{2}+2x+1}.
\frac{\frac{1-x^{2}-x}{x\left(x+1\right)}}{\frac{x-1}{x+1}}
Cancel out x+1 in both numerator and denominator.
\frac{\left(1-x^{2}-x\right)\left(x+1\right)}{x\left(x+1\right)\left(x-1\right)}
Divide \frac{1-x^{2}-x}{x\left(x+1\right)} by \frac{x-1}{x+1} by multiplying \frac{1-x^{2}-x}{x\left(x+1\right)} by the reciprocal of \frac{x-1}{x+1}.
\frac{-x^{2}-x+1}{x\left(x-1\right)}
Cancel out x+1 in both numerator and denominator.
\frac{-x^{2}-x+1}{x^{2}-x}
Use the distributive property to multiply x by x-1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}