Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{1}{x\left(x+3\right)}+\frac{1}{x\left(x-3\right)}}{\frac{x^{2}+x+1}{x^{2}-9}}
Factor x^{2}+3x. Factor x^{2}-3x.
\frac{\frac{x-3}{x\left(x-3\right)\left(x+3\right)}+\frac{x+3}{x\left(x-3\right)\left(x+3\right)}}{\frac{x^{2}+x+1}{x^{2}-9}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x+3\right) and x\left(x-3\right) is x\left(x-3\right)\left(x+3\right). Multiply \frac{1}{x\left(x+3\right)} times \frac{x-3}{x-3}. Multiply \frac{1}{x\left(x-3\right)} times \frac{x+3}{x+3}.
\frac{\frac{x-3+x+3}{x\left(x-3\right)\left(x+3\right)}}{\frac{x^{2}+x+1}{x^{2}-9}}
Since \frac{x-3}{x\left(x-3\right)\left(x+3\right)} and \frac{x+3}{x\left(x-3\right)\left(x+3\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{2x}{x\left(x-3\right)\left(x+3\right)}}{\frac{x^{2}+x+1}{x^{2}-9}}
Combine like terms in x-3+x+3.
\frac{\frac{2}{\left(x-3\right)\left(x+3\right)}}{\frac{x^{2}+x+1}{x^{2}-9}}
Cancel out x in both numerator and denominator.
\frac{2\left(x^{2}-9\right)}{\left(x-3\right)\left(x+3\right)\left(x^{2}+x+1\right)}
Divide \frac{2}{\left(x-3\right)\left(x+3\right)} by \frac{x^{2}+x+1}{x^{2}-9} by multiplying \frac{2}{\left(x-3\right)\left(x+3\right)} by the reciprocal of \frac{x^{2}+x+1}{x^{2}-9}.
\frac{2\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)\left(x^{2}+x+1\right)}
Factor the expressions that are not already factored.
\frac{2}{x^{2}+x+1}
Cancel out \left(x-3\right)\left(x+3\right) in both numerator and denominator.
\frac{\frac{1}{x\left(x+3\right)}+\frac{1}{x\left(x-3\right)}}{\frac{x^{2}+x+1}{x^{2}-9}}
Factor x^{2}+3x. Factor x^{2}-3x.
\frac{\frac{x-3}{x\left(x-3\right)\left(x+3\right)}+\frac{x+3}{x\left(x-3\right)\left(x+3\right)}}{\frac{x^{2}+x+1}{x^{2}-9}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x+3\right) and x\left(x-3\right) is x\left(x-3\right)\left(x+3\right). Multiply \frac{1}{x\left(x+3\right)} times \frac{x-3}{x-3}. Multiply \frac{1}{x\left(x-3\right)} times \frac{x+3}{x+3}.
\frac{\frac{x-3+x+3}{x\left(x-3\right)\left(x+3\right)}}{\frac{x^{2}+x+1}{x^{2}-9}}
Since \frac{x-3}{x\left(x-3\right)\left(x+3\right)} and \frac{x+3}{x\left(x-3\right)\left(x+3\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{2x}{x\left(x-3\right)\left(x+3\right)}}{\frac{x^{2}+x+1}{x^{2}-9}}
Combine like terms in x-3+x+3.
\frac{\frac{2}{\left(x-3\right)\left(x+3\right)}}{\frac{x^{2}+x+1}{x^{2}-9}}
Cancel out x in both numerator and denominator.
\frac{2\left(x^{2}-9\right)}{\left(x-3\right)\left(x+3\right)\left(x^{2}+x+1\right)}
Divide \frac{2}{\left(x-3\right)\left(x+3\right)} by \frac{x^{2}+x+1}{x^{2}-9} by multiplying \frac{2}{\left(x-3\right)\left(x+3\right)} by the reciprocal of \frac{x^{2}+x+1}{x^{2}-9}.
\frac{2\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)\left(x^{2}+x+1\right)}
Factor the expressions that are not already factored.
\frac{2}{x^{2}+x+1}
Cancel out \left(x-3\right)\left(x+3\right) in both numerator and denominator.