Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{1}{x+3}+\frac{6}{\left(x-3\right)\left(x+3\right)}}{\frac{1}{x^{2}-6x+9}}
Factor x^{2}-9.
\frac{\frac{x-3}{\left(x-3\right)\left(x+3\right)}+\frac{6}{\left(x-3\right)\left(x+3\right)}}{\frac{1}{x^{2}-6x+9}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+3 and \left(x-3\right)\left(x+3\right) is \left(x-3\right)\left(x+3\right). Multiply \frac{1}{x+3} times \frac{x-3}{x-3}.
\frac{\frac{x-3+6}{\left(x-3\right)\left(x+3\right)}}{\frac{1}{x^{2}-6x+9}}
Since \frac{x-3}{\left(x-3\right)\left(x+3\right)} and \frac{6}{\left(x-3\right)\left(x+3\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{x+3}{\left(x-3\right)\left(x+3\right)}}{\frac{1}{x^{2}-6x+9}}
Combine like terms in x-3+6.
\frac{\frac{1}{x-3}}{\frac{1}{x^{2}-6x+9}}
Cancel out x+3 in both numerator and denominator.
\frac{x^{2}-6x+9}{x-3}
Divide \frac{1}{x-3} by \frac{1}{x^{2}-6x+9} by multiplying \frac{1}{x-3} by the reciprocal of \frac{1}{x^{2}-6x+9}.
\frac{\left(x-3\right)^{2}}{x-3}
Factor the expressions that are not already factored.
x-3
Cancel out x-3 in both numerator and denominator.
\frac{\frac{1}{x+3}+\frac{6}{\left(x-3\right)\left(x+3\right)}}{\frac{1}{x^{2}-6x+9}}
Factor x^{2}-9.
\frac{\frac{x-3}{\left(x-3\right)\left(x+3\right)}+\frac{6}{\left(x-3\right)\left(x+3\right)}}{\frac{1}{x^{2}-6x+9}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+3 and \left(x-3\right)\left(x+3\right) is \left(x-3\right)\left(x+3\right). Multiply \frac{1}{x+3} times \frac{x-3}{x-3}.
\frac{\frac{x-3+6}{\left(x-3\right)\left(x+3\right)}}{\frac{1}{x^{2}-6x+9}}
Since \frac{x-3}{\left(x-3\right)\left(x+3\right)} and \frac{6}{\left(x-3\right)\left(x+3\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{x+3}{\left(x-3\right)\left(x+3\right)}}{\frac{1}{x^{2}-6x+9}}
Combine like terms in x-3+6.
\frac{\frac{1}{x-3}}{\frac{1}{x^{2}-6x+9}}
Cancel out x+3 in both numerator and denominator.
\frac{x^{2}-6x+9}{x-3}
Divide \frac{1}{x-3} by \frac{1}{x^{2}-6x+9} by multiplying \frac{1}{x-3} by the reciprocal of \frac{1}{x^{2}-6x+9}.
\frac{\left(x-3\right)^{2}}{x-3}
Factor the expressions that are not already factored.
x-3
Cancel out x-3 in both numerator and denominator.