Skip to main content
Solve for y (complex solution)
Tick mark Image
Solve for y
Tick mark Image
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{1}{x+1}-\frac{x-2}{\left(x-1\right)\left(x+1\right)}}{\frac{1}{x+1}}\times \frac{1}{2}yx=\left(20019-\pi \right)^{2}+1
Factor x^{2}-1.
\frac{\frac{x-1}{\left(x-1\right)\left(x+1\right)}-\frac{x-2}{\left(x-1\right)\left(x+1\right)}}{\frac{1}{x+1}}\times \frac{1}{2}yx=\left(20019-\pi \right)^{2}+1
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+1 and \left(x-1\right)\left(x+1\right) is \left(x-1\right)\left(x+1\right). Multiply \frac{1}{x+1} times \frac{x-1}{x-1}.
\frac{\frac{x-1-\left(x-2\right)}{\left(x-1\right)\left(x+1\right)}}{\frac{1}{x+1}}\times \frac{1}{2}yx=\left(20019-\pi \right)^{2}+1
Since \frac{x-1}{\left(x-1\right)\left(x+1\right)} and \frac{x-2}{\left(x-1\right)\left(x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x-1-x+2}{\left(x-1\right)\left(x+1\right)}}{\frac{1}{x+1}}\times \frac{1}{2}yx=\left(20019-\pi \right)^{2}+1
Do the multiplications in x-1-\left(x-2\right).
\frac{\frac{1}{\left(x-1\right)\left(x+1\right)}}{\frac{1}{x+1}}\times \frac{1}{2}yx=\left(20019-\pi \right)^{2}+1
Combine like terms in x-1-x+2.
\frac{x+1}{\left(x-1\right)\left(x+1\right)}\times \frac{1}{2}yx=\left(20019-\pi \right)^{2}+1
Divide \frac{1}{\left(x-1\right)\left(x+1\right)} by \frac{1}{x+1} by multiplying \frac{1}{\left(x-1\right)\left(x+1\right)} by the reciprocal of \frac{1}{x+1}.
\frac{1}{x-1}\times \frac{1}{2}yx=\left(20019-\pi \right)^{2}+1
Cancel out x+1 in both numerator and denominator.
\frac{1}{\left(x-1\right)\times 2}yx=\left(20019-\pi \right)^{2}+1
Multiply \frac{1}{x-1} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{y}{\left(x-1\right)\times 2}x=\left(20019-\pi \right)^{2}+1
Express \frac{1}{\left(x-1\right)\times 2}y as a single fraction.
\frac{yx}{\left(x-1\right)\times 2}=\left(20019-\pi \right)^{2}+1
Express \frac{y}{\left(x-1\right)\times 2}x as a single fraction.
\frac{yx}{\left(x-1\right)\times 2}=400760361-40038\pi +\pi ^{2}+1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(20019-\pi \right)^{2}.
\frac{yx}{\left(x-1\right)\times 2}=400760362-40038\pi +\pi ^{2}
Add 400760361 and 1 to get 400760362.
\frac{yx}{2x-2}=400760362-40038\pi +\pi ^{2}
Use the distributive property to multiply x-1 by 2.
yx=2\left(x-1\right)\times 400760362-40038\pi \times 2\left(x-1\right)+2\left(x-1\right)\pi ^{2}
Multiply both sides of the equation by 2\left(x-1\right).
xy=2\pi ^{2}\left(x-1\right)-40038\times 2\pi \left(x-1\right)+2\times 400760362\left(x-1\right)
Reorder the terms.
xy=2\pi ^{2}\left(x-1\right)-80076\pi \left(x-1\right)+801520724\left(x-1\right)
Do the multiplications.
xy=2\pi ^{2}x-2\pi ^{2}-80076\pi \left(x-1\right)+801520724\left(x-1\right)
Use the distributive property to multiply 2\pi ^{2} by x-1.
xy=2\pi ^{2}x-2\pi ^{2}-80076\pi x+80076\pi +801520724\left(x-1\right)
Use the distributive property to multiply -80076\pi by x-1.
xy=2\pi ^{2}x-2\pi ^{2}-80076\pi x+80076\pi +801520724x-801520724
Use the distributive property to multiply 801520724 by x-1.
xy=2\pi ^{2}x-80076\pi x+801520724x-2\pi ^{2}+80076\pi -801520724
The equation is in standard form.
\frac{xy}{x}=\frac{2\pi ^{2}x-80076\pi x+801520724x-2\pi ^{2}+80076\pi -801520724}{x}
Divide both sides by x.
y=\frac{2\pi ^{2}x-80076\pi x+801520724x-2\pi ^{2}+80076\pi -801520724}{x}
Dividing by x undoes the multiplication by x.
y=\frac{2\left(\pi ^{2}x-40038\pi x+400760362x-\pi ^{2}+40038\pi -400760362\right)}{x}
Divide 2\pi ^{2}x-2\pi ^{2}-80076\pi x+80076\pi +801520724x-801520724 by x.
\frac{\frac{1}{x+1}-\frac{x-2}{\left(x-1\right)\left(x+1\right)}}{\frac{1}{x+1}}\times \frac{1}{2}yx=\left(20019-\pi \right)^{2}+1
Factor x^{2}-1.
\frac{\frac{x-1}{\left(x-1\right)\left(x+1\right)}-\frac{x-2}{\left(x-1\right)\left(x+1\right)}}{\frac{1}{x+1}}\times \frac{1}{2}yx=\left(20019-\pi \right)^{2}+1
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+1 and \left(x-1\right)\left(x+1\right) is \left(x-1\right)\left(x+1\right). Multiply \frac{1}{x+1} times \frac{x-1}{x-1}.
\frac{\frac{x-1-\left(x-2\right)}{\left(x-1\right)\left(x+1\right)}}{\frac{1}{x+1}}\times \frac{1}{2}yx=\left(20019-\pi \right)^{2}+1
Since \frac{x-1}{\left(x-1\right)\left(x+1\right)} and \frac{x-2}{\left(x-1\right)\left(x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x-1-x+2}{\left(x-1\right)\left(x+1\right)}}{\frac{1}{x+1}}\times \frac{1}{2}yx=\left(20019-\pi \right)^{2}+1
Do the multiplications in x-1-\left(x-2\right).
\frac{\frac{1}{\left(x-1\right)\left(x+1\right)}}{\frac{1}{x+1}}\times \frac{1}{2}yx=\left(20019-\pi \right)^{2}+1
Combine like terms in x-1-x+2.
\frac{x+1}{\left(x-1\right)\left(x+1\right)}\times \frac{1}{2}yx=\left(20019-\pi \right)^{2}+1
Divide \frac{1}{\left(x-1\right)\left(x+1\right)} by \frac{1}{x+1} by multiplying \frac{1}{\left(x-1\right)\left(x+1\right)} by the reciprocal of \frac{1}{x+1}.
\frac{1}{x-1}\times \frac{1}{2}yx=\left(20019-\pi \right)^{2}+1
Cancel out x+1 in both numerator and denominator.
\frac{1}{\left(x-1\right)\times 2}yx=\left(20019-\pi \right)^{2}+1
Multiply \frac{1}{x-1} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{y}{\left(x-1\right)\times 2}x=\left(20019-\pi \right)^{2}+1
Express \frac{1}{\left(x-1\right)\times 2}y as a single fraction.
\frac{yx}{\left(x-1\right)\times 2}=\left(20019-\pi \right)^{2}+1
Express \frac{y}{\left(x-1\right)\times 2}x as a single fraction.
\frac{yx}{\left(x-1\right)\times 2}=400760361-40038\pi +\pi ^{2}+1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(20019-\pi \right)^{2}.
\frac{yx}{\left(x-1\right)\times 2}=400760362-40038\pi +\pi ^{2}
Add 400760361 and 1 to get 400760362.
\frac{yx}{2x-2}=400760362-40038\pi +\pi ^{2}
Use the distributive property to multiply x-1 by 2.
yx=2\left(x-1\right)\times 400760362-40038\pi \times 2\left(x-1\right)+2\left(x-1\right)\pi ^{2}
Multiply both sides of the equation by 2\left(x-1\right).
xy=2\pi ^{2}\left(x-1\right)-40038\times 2\pi \left(x-1\right)+2\times 400760362\left(x-1\right)
Reorder the terms.
xy=2\pi ^{2}\left(x-1\right)-80076\pi \left(x-1\right)+801520724\left(x-1\right)
Do the multiplications.
xy=2\pi ^{2}x-2\pi ^{2}-80076\pi \left(x-1\right)+801520724\left(x-1\right)
Use the distributive property to multiply 2\pi ^{2} by x-1.
xy=2\pi ^{2}x-2\pi ^{2}-80076\pi x+80076\pi +801520724\left(x-1\right)
Use the distributive property to multiply -80076\pi by x-1.
xy=2\pi ^{2}x-2\pi ^{2}-80076\pi x+80076\pi +801520724x-801520724
Use the distributive property to multiply 801520724 by x-1.
xy=2\pi ^{2}x-80076\pi x+801520724x-2\pi ^{2}+80076\pi -801520724
The equation is in standard form.
\frac{xy}{x}=\frac{2\pi ^{2}x-80076\pi x+801520724x-2\pi ^{2}+80076\pi -801520724}{x}
Divide both sides by x.
y=\frac{2\pi ^{2}x-80076\pi x+801520724x-2\pi ^{2}+80076\pi -801520724}{x}
Dividing by x undoes the multiplication by x.
y=\frac{2\left(\pi ^{2}x-40038\pi x+400760362x-\pi ^{2}+40038\pi -400760362\right)}{x}
Divide 2\pi ^{2}x-2\pi ^{2}-80076\pi x+80076\pi +801520724x-801520724 by x.