Evaluate
\frac{1}{x+1}
Expand
\frac{1}{x+1}
Graph
Share
Copied to clipboard
\frac{\frac{x-1}{\left(x-1\right)\left(x+1\right)}-\frac{x+1}{\left(x-1\right)\left(x+1\right)}}{\frac{2}{1-x}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+1 and x-1 is \left(x-1\right)\left(x+1\right). Multiply \frac{1}{x+1} times \frac{x-1}{x-1}. Multiply \frac{1}{x-1} times \frac{x+1}{x+1}.
\frac{\frac{x-1-\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}}{\frac{2}{1-x}}
Since \frac{x-1}{\left(x-1\right)\left(x+1\right)} and \frac{x+1}{\left(x-1\right)\left(x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x-1-x-1}{\left(x-1\right)\left(x+1\right)}}{\frac{2}{1-x}}
Do the multiplications in x-1-\left(x+1\right).
\frac{\frac{-2}{\left(x-1\right)\left(x+1\right)}}{\frac{2}{1-x}}
Combine like terms in x-1-x-1.
\frac{-2\left(1-x\right)}{\left(x-1\right)\left(x+1\right)\times 2}
Divide \frac{-2}{\left(x-1\right)\left(x+1\right)} by \frac{2}{1-x} by multiplying \frac{-2}{\left(x-1\right)\left(x+1\right)} by the reciprocal of \frac{2}{1-x}.
\frac{-2\left(-1\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}
Extract the negative sign in 1-x.
\frac{-\left(-1\right)}{x+1}
Cancel out 2\left(x-1\right) in both numerator and denominator.
\frac{1}{x+1}
Multiply -1 and -1 to get 1.
\frac{\frac{x-1}{\left(x-1\right)\left(x+1\right)}-\frac{x+1}{\left(x-1\right)\left(x+1\right)}}{\frac{2}{1-x}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+1 and x-1 is \left(x-1\right)\left(x+1\right). Multiply \frac{1}{x+1} times \frac{x-1}{x-1}. Multiply \frac{1}{x-1} times \frac{x+1}{x+1}.
\frac{\frac{x-1-\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}}{\frac{2}{1-x}}
Since \frac{x-1}{\left(x-1\right)\left(x+1\right)} and \frac{x+1}{\left(x-1\right)\left(x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x-1-x-1}{\left(x-1\right)\left(x+1\right)}}{\frac{2}{1-x}}
Do the multiplications in x-1-\left(x+1\right).
\frac{\frac{-2}{\left(x-1\right)\left(x+1\right)}}{\frac{2}{1-x}}
Combine like terms in x-1-x-1.
\frac{-2\left(1-x\right)}{\left(x-1\right)\left(x+1\right)\times 2}
Divide \frac{-2}{\left(x-1\right)\left(x+1\right)} by \frac{2}{1-x} by multiplying \frac{-2}{\left(x-1\right)\left(x+1\right)} by the reciprocal of \frac{2}{1-x}.
\frac{-2\left(-1\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}
Extract the negative sign in 1-x.
\frac{-\left(-1\right)}{x+1}
Cancel out 2\left(x-1\right) in both numerator and denominator.
\frac{1}{x+1}
Multiply -1 and -1 to get 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}