Evaluate
\frac{1}{3\left(t-2\right)}
Expand
\frac{1}{3\left(t-2\right)}
Share
Copied to clipboard
\frac{\frac{1}{\left(t-2\right)\left(t+2\right)}+\frac{1}{t-2}}{\frac{3t+9}{t+2}}
Factor t^{2}-4.
\frac{\frac{1}{\left(t-2\right)\left(t+2\right)}+\frac{t+2}{\left(t-2\right)\left(t+2\right)}}{\frac{3t+9}{t+2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(t-2\right)\left(t+2\right) and t-2 is \left(t-2\right)\left(t+2\right). Multiply \frac{1}{t-2} times \frac{t+2}{t+2}.
\frac{\frac{1+t+2}{\left(t-2\right)\left(t+2\right)}}{\frac{3t+9}{t+2}}
Since \frac{1}{\left(t-2\right)\left(t+2\right)} and \frac{t+2}{\left(t-2\right)\left(t+2\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{3+t}{\left(t-2\right)\left(t+2\right)}}{\frac{3t+9}{t+2}}
Combine like terms in 1+t+2.
\frac{\left(3+t\right)\left(t+2\right)}{\left(t-2\right)\left(t+2\right)\left(3t+9\right)}
Divide \frac{3+t}{\left(t-2\right)\left(t+2\right)} by \frac{3t+9}{t+2} by multiplying \frac{3+t}{\left(t-2\right)\left(t+2\right)} by the reciprocal of \frac{3t+9}{t+2}.
\frac{t+3}{\left(t-2\right)\left(3t+9\right)}
Cancel out t+2 in both numerator and denominator.
\frac{t+3}{3\left(t-2\right)\left(t+3\right)}
Factor the expressions that are not already factored.
\frac{1}{3\left(t-2\right)}
Cancel out t+3 in both numerator and denominator.
\frac{1}{3t-6}
Expand the expression.
\frac{\frac{1}{\left(t-2\right)\left(t+2\right)}+\frac{1}{t-2}}{\frac{3t+9}{t+2}}
Factor t^{2}-4.
\frac{\frac{1}{\left(t-2\right)\left(t+2\right)}+\frac{t+2}{\left(t-2\right)\left(t+2\right)}}{\frac{3t+9}{t+2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(t-2\right)\left(t+2\right) and t-2 is \left(t-2\right)\left(t+2\right). Multiply \frac{1}{t-2} times \frac{t+2}{t+2}.
\frac{\frac{1+t+2}{\left(t-2\right)\left(t+2\right)}}{\frac{3t+9}{t+2}}
Since \frac{1}{\left(t-2\right)\left(t+2\right)} and \frac{t+2}{\left(t-2\right)\left(t+2\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{3+t}{\left(t-2\right)\left(t+2\right)}}{\frac{3t+9}{t+2}}
Combine like terms in 1+t+2.
\frac{\left(3+t\right)\left(t+2\right)}{\left(t-2\right)\left(t+2\right)\left(3t+9\right)}
Divide \frac{3+t}{\left(t-2\right)\left(t+2\right)} by \frac{3t+9}{t+2} by multiplying \frac{3+t}{\left(t-2\right)\left(t+2\right)} by the reciprocal of \frac{3t+9}{t+2}.
\frac{t+3}{\left(t-2\right)\left(3t+9\right)}
Cancel out t+2 in both numerator and denominator.
\frac{t+3}{3\left(t-2\right)\left(t+3\right)}
Factor the expressions that are not already factored.
\frac{1}{3\left(t-2\right)}
Cancel out t+3 in both numerator and denominator.
\frac{1}{3t-6}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}