Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{1}{\left(t-2\right)\left(t+2\right)}+\frac{1}{t-2}}{\frac{3t+9}{t+2}}
Factor t^{2}-4.
\frac{\frac{1}{\left(t-2\right)\left(t+2\right)}+\frac{t+2}{\left(t-2\right)\left(t+2\right)}}{\frac{3t+9}{t+2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(t-2\right)\left(t+2\right) and t-2 is \left(t-2\right)\left(t+2\right). Multiply \frac{1}{t-2} times \frac{t+2}{t+2}.
\frac{\frac{1+t+2}{\left(t-2\right)\left(t+2\right)}}{\frac{3t+9}{t+2}}
Since \frac{1}{\left(t-2\right)\left(t+2\right)} and \frac{t+2}{\left(t-2\right)\left(t+2\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{3+t}{\left(t-2\right)\left(t+2\right)}}{\frac{3t+9}{t+2}}
Combine like terms in 1+t+2.
\frac{\left(3+t\right)\left(t+2\right)}{\left(t-2\right)\left(t+2\right)\left(3t+9\right)}
Divide \frac{3+t}{\left(t-2\right)\left(t+2\right)} by \frac{3t+9}{t+2} by multiplying \frac{3+t}{\left(t-2\right)\left(t+2\right)} by the reciprocal of \frac{3t+9}{t+2}.
\frac{t+3}{\left(t-2\right)\left(3t+9\right)}
Cancel out t+2 in both numerator and denominator.
\frac{t+3}{3\left(t-2\right)\left(t+3\right)}
Factor the expressions that are not already factored.
\frac{1}{3\left(t-2\right)}
Cancel out t+3 in both numerator and denominator.
\frac{1}{3t-6}
Expand the expression.
\frac{\frac{1}{\left(t-2\right)\left(t+2\right)}+\frac{1}{t-2}}{\frac{3t+9}{t+2}}
Factor t^{2}-4.
\frac{\frac{1}{\left(t-2\right)\left(t+2\right)}+\frac{t+2}{\left(t-2\right)\left(t+2\right)}}{\frac{3t+9}{t+2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(t-2\right)\left(t+2\right) and t-2 is \left(t-2\right)\left(t+2\right). Multiply \frac{1}{t-2} times \frac{t+2}{t+2}.
\frac{\frac{1+t+2}{\left(t-2\right)\left(t+2\right)}}{\frac{3t+9}{t+2}}
Since \frac{1}{\left(t-2\right)\left(t+2\right)} and \frac{t+2}{\left(t-2\right)\left(t+2\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{3+t}{\left(t-2\right)\left(t+2\right)}}{\frac{3t+9}{t+2}}
Combine like terms in 1+t+2.
\frac{\left(3+t\right)\left(t+2\right)}{\left(t-2\right)\left(t+2\right)\left(3t+9\right)}
Divide \frac{3+t}{\left(t-2\right)\left(t+2\right)} by \frac{3t+9}{t+2} by multiplying \frac{3+t}{\left(t-2\right)\left(t+2\right)} by the reciprocal of \frac{3t+9}{t+2}.
\frac{t+3}{\left(t-2\right)\left(3t+9\right)}
Cancel out t+2 in both numerator and denominator.
\frac{t+3}{3\left(t-2\right)\left(t+3\right)}
Factor the expressions that are not already factored.
\frac{1}{3\left(t-2\right)}
Cancel out t+3 in both numerator and denominator.
\frac{1}{3t-6}
Expand the expression.