Evaluate
-\frac{m^{2}-2mn+n}{\left(m-1\right)m^{2}}
Expand
-\frac{m^{2}-2mn+n}{\left(m-1\right)m^{2}}
Share
Copied to clipboard
\frac{\frac{1}{m-1}-\frac{n}{m\left(m-n\right)}}{\frac{m}{n-m}}
Factor m^{2}-mn.
\frac{\frac{m\left(m-n\right)}{m\left(m-1\right)\left(m-n\right)}-\frac{n\left(m-1\right)}{m\left(m-1\right)\left(m-n\right)}}{\frac{m}{n-m}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of m-1 and m\left(m-n\right) is m\left(m-1\right)\left(m-n\right). Multiply \frac{1}{m-1} times \frac{m\left(m-n\right)}{m\left(m-n\right)}. Multiply \frac{n}{m\left(m-n\right)} times \frac{m-1}{m-1}.
\frac{\frac{m\left(m-n\right)-n\left(m-1\right)}{m\left(m-1\right)\left(m-n\right)}}{\frac{m}{n-m}}
Since \frac{m\left(m-n\right)}{m\left(m-1\right)\left(m-n\right)} and \frac{n\left(m-1\right)}{m\left(m-1\right)\left(m-n\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{m^{2}-mn-mn+n}{m\left(m-1\right)\left(m-n\right)}}{\frac{m}{n-m}}
Do the multiplications in m\left(m-n\right)-n\left(m-1\right).
\frac{\frac{m^{2}-2mn+n}{m\left(m-1\right)\left(m-n\right)}}{\frac{m}{n-m}}
Combine like terms in m^{2}-mn-mn+n.
\frac{\left(m^{2}-2mn+n\right)\left(n-m\right)}{m\left(m-1\right)\left(m-n\right)m}
Divide \frac{m^{2}-2mn+n}{m\left(m-1\right)\left(m-n\right)} by \frac{m}{n-m} by multiplying \frac{m^{2}-2mn+n}{m\left(m-1\right)\left(m-n\right)} by the reciprocal of \frac{m}{n-m}.
\frac{-\left(m-n\right)\left(m^{2}-2mn+n\right)}{mm\left(m-1\right)\left(m-n\right)}
Extract the negative sign in n-m.
\frac{-\left(m^{2}-2mn+n\right)}{mm\left(m-1\right)}
Cancel out m-n in both numerator and denominator.
\frac{-\left(m^{2}-2mn+n\right)}{m^{2}\left(m-1\right)}
Multiply m and m to get m^{2}.
\frac{-m^{2}+2mn-n}{m^{2}\left(m-1\right)}
To find the opposite of m^{2}-2mn+n, find the opposite of each term.
\frac{-m^{2}+2mn-n}{m^{3}-m^{2}}
Use the distributive property to multiply m^{2} by m-1.
\frac{\frac{1}{m-1}-\frac{n}{m\left(m-n\right)}}{\frac{m}{n-m}}
Factor m^{2}-mn.
\frac{\frac{m\left(m-n\right)}{m\left(m-1\right)\left(m-n\right)}-\frac{n\left(m-1\right)}{m\left(m-1\right)\left(m-n\right)}}{\frac{m}{n-m}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of m-1 and m\left(m-n\right) is m\left(m-1\right)\left(m-n\right). Multiply \frac{1}{m-1} times \frac{m\left(m-n\right)}{m\left(m-n\right)}. Multiply \frac{n}{m\left(m-n\right)} times \frac{m-1}{m-1}.
\frac{\frac{m\left(m-n\right)-n\left(m-1\right)}{m\left(m-1\right)\left(m-n\right)}}{\frac{m}{n-m}}
Since \frac{m\left(m-n\right)}{m\left(m-1\right)\left(m-n\right)} and \frac{n\left(m-1\right)}{m\left(m-1\right)\left(m-n\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{m^{2}-mn-mn+n}{m\left(m-1\right)\left(m-n\right)}}{\frac{m}{n-m}}
Do the multiplications in m\left(m-n\right)-n\left(m-1\right).
\frac{\frac{m^{2}-2mn+n}{m\left(m-1\right)\left(m-n\right)}}{\frac{m}{n-m}}
Combine like terms in m^{2}-mn-mn+n.
\frac{\left(m^{2}-2mn+n\right)\left(n-m\right)}{m\left(m-1\right)\left(m-n\right)m}
Divide \frac{m^{2}-2mn+n}{m\left(m-1\right)\left(m-n\right)} by \frac{m}{n-m} by multiplying \frac{m^{2}-2mn+n}{m\left(m-1\right)\left(m-n\right)} by the reciprocal of \frac{m}{n-m}.
\frac{-\left(m-n\right)\left(m^{2}-2mn+n\right)}{mm\left(m-1\right)\left(m-n\right)}
Extract the negative sign in n-m.
\frac{-\left(m^{2}-2mn+n\right)}{mm\left(m-1\right)}
Cancel out m-n in both numerator and denominator.
\frac{-\left(m^{2}-2mn+n\right)}{m^{2}\left(m-1\right)}
Multiply m and m to get m^{2}.
\frac{-m^{2}+2mn-n}{m^{2}\left(m-1\right)}
To find the opposite of m^{2}-2mn+n, find the opposite of each term.
\frac{-m^{2}+2mn-n}{m^{3}-m^{2}}
Use the distributive property to multiply m^{2} by m-1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}