Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{1}{m-1}-\frac{n}{m\left(m-n\right)}}{\frac{m}{n-m}}
Factor m^{2}-mn.
\frac{\frac{m\left(m-n\right)}{m\left(m-1\right)\left(m-n\right)}-\frac{n\left(m-1\right)}{m\left(m-1\right)\left(m-n\right)}}{\frac{m}{n-m}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of m-1 and m\left(m-n\right) is m\left(m-1\right)\left(m-n\right). Multiply \frac{1}{m-1} times \frac{m\left(m-n\right)}{m\left(m-n\right)}. Multiply \frac{n}{m\left(m-n\right)} times \frac{m-1}{m-1}.
\frac{\frac{m\left(m-n\right)-n\left(m-1\right)}{m\left(m-1\right)\left(m-n\right)}}{\frac{m}{n-m}}
Since \frac{m\left(m-n\right)}{m\left(m-1\right)\left(m-n\right)} and \frac{n\left(m-1\right)}{m\left(m-1\right)\left(m-n\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{m^{2}-mn-mn+n}{m\left(m-1\right)\left(m-n\right)}}{\frac{m}{n-m}}
Do the multiplications in m\left(m-n\right)-n\left(m-1\right).
\frac{\frac{m^{2}-2mn+n}{m\left(m-1\right)\left(m-n\right)}}{\frac{m}{n-m}}
Combine like terms in m^{2}-mn-mn+n.
\frac{\left(m^{2}-2mn+n\right)\left(n-m\right)}{m\left(m-1\right)\left(m-n\right)m}
Divide \frac{m^{2}-2mn+n}{m\left(m-1\right)\left(m-n\right)} by \frac{m}{n-m} by multiplying \frac{m^{2}-2mn+n}{m\left(m-1\right)\left(m-n\right)} by the reciprocal of \frac{m}{n-m}.
\frac{-\left(m-n\right)\left(m^{2}-2mn+n\right)}{mm\left(m-1\right)\left(m-n\right)}
Extract the negative sign in n-m.
\frac{-\left(m^{2}-2mn+n\right)}{mm\left(m-1\right)}
Cancel out m-n in both numerator and denominator.
\frac{-\left(m^{2}-2mn+n\right)}{m^{2}\left(m-1\right)}
Multiply m and m to get m^{2}.
\frac{-m^{2}+2mn-n}{m^{2}\left(m-1\right)}
To find the opposite of m^{2}-2mn+n, find the opposite of each term.
\frac{-m^{2}+2mn-n}{m^{3}-m^{2}}
Use the distributive property to multiply m^{2} by m-1.
\frac{\frac{1}{m-1}-\frac{n}{m\left(m-n\right)}}{\frac{m}{n-m}}
Factor m^{2}-mn.
\frac{\frac{m\left(m-n\right)}{m\left(m-1\right)\left(m-n\right)}-\frac{n\left(m-1\right)}{m\left(m-1\right)\left(m-n\right)}}{\frac{m}{n-m}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of m-1 and m\left(m-n\right) is m\left(m-1\right)\left(m-n\right). Multiply \frac{1}{m-1} times \frac{m\left(m-n\right)}{m\left(m-n\right)}. Multiply \frac{n}{m\left(m-n\right)} times \frac{m-1}{m-1}.
\frac{\frac{m\left(m-n\right)-n\left(m-1\right)}{m\left(m-1\right)\left(m-n\right)}}{\frac{m}{n-m}}
Since \frac{m\left(m-n\right)}{m\left(m-1\right)\left(m-n\right)} and \frac{n\left(m-1\right)}{m\left(m-1\right)\left(m-n\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{m^{2}-mn-mn+n}{m\left(m-1\right)\left(m-n\right)}}{\frac{m}{n-m}}
Do the multiplications in m\left(m-n\right)-n\left(m-1\right).
\frac{\frac{m^{2}-2mn+n}{m\left(m-1\right)\left(m-n\right)}}{\frac{m}{n-m}}
Combine like terms in m^{2}-mn-mn+n.
\frac{\left(m^{2}-2mn+n\right)\left(n-m\right)}{m\left(m-1\right)\left(m-n\right)m}
Divide \frac{m^{2}-2mn+n}{m\left(m-1\right)\left(m-n\right)} by \frac{m}{n-m} by multiplying \frac{m^{2}-2mn+n}{m\left(m-1\right)\left(m-n\right)} by the reciprocal of \frac{m}{n-m}.
\frac{-\left(m-n\right)\left(m^{2}-2mn+n\right)}{mm\left(m-1\right)\left(m-n\right)}
Extract the negative sign in n-m.
\frac{-\left(m^{2}-2mn+n\right)}{mm\left(m-1\right)}
Cancel out m-n in both numerator and denominator.
\frac{-\left(m^{2}-2mn+n\right)}{m^{2}\left(m-1\right)}
Multiply m and m to get m^{2}.
\frac{-m^{2}+2mn-n}{m^{2}\left(m-1\right)}
To find the opposite of m^{2}-2mn+n, find the opposite of each term.
\frac{-m^{2}+2mn-n}{m^{3}-m^{2}}
Use the distributive property to multiply m^{2} by m-1.