Differentiate w.r.t. h
\frac{6\sqrt[5]{h}}{5}
Evaluate
h^{\frac{6}{5}}
Share
Copied to clipboard
\frac{\mathrm{d}}{\mathrm{d}h}(\left(\frac{1}{h^{-8}}\right)^{\frac{3}{20}})
To multiply powers of the same base, add their exponents. Add -1 and -7 to get -8.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{1^{\frac{3}{20}}}{\left(h^{-8}\right)^{\frac{3}{20}}})
To raise \frac{1}{h^{-8}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{1^{\frac{3}{20}}}{h^{-\frac{6}{5}}})
To raise a power to another power, multiply the exponents. Multiply -8 and \frac{3}{20} to get -\frac{6}{5}.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{1}{h^{-\frac{6}{5}}})
Calculate 1 to the power of \frac{3}{20} and get 1.
-\left(h^{-\frac{6}{5}}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}h}(h^{-\frac{6}{5}})
If F is the composition of two differentiable functions f\left(u\right) and u=g\left(x\right), that is, if F\left(x\right)=f\left(g\left(x\right)\right), then the derivative of F is the derivative of f with respect to u times the derivative of g with respect to x, that is, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(h^{-\frac{6}{5}}\right)^{-2}\left(-\frac{6}{5}\right)h^{-\frac{6}{5}-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\frac{6}{5}h^{-\frac{11}{5}}\left(h^{-\frac{6}{5}}\right)^{-2}
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}