Evaluate
\frac{2}{b^{2}}
Expand
\frac{2}{b^{2}}
Share
Copied to clipboard
\left(\frac{1}{\left(b-3\right)\left(b+3\right)}-\frac{1}{b^{2}+9}\right)\left(1-\frac{9}{b^{2}}\right)\left(1+\frac{b^{2}}{9}\right)
Factor b^{2}-9.
\left(\frac{b^{2}+9}{\left(b-3\right)\left(b+3\right)\left(b^{2}+9\right)}-\frac{\left(b-3\right)\left(b+3\right)}{\left(b-3\right)\left(b+3\right)\left(b^{2}+9\right)}\right)\left(1-\frac{9}{b^{2}}\right)\left(1+\frac{b^{2}}{9}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(b-3\right)\left(b+3\right) and b^{2}+9 is \left(b-3\right)\left(b+3\right)\left(b^{2}+9\right). Multiply \frac{1}{\left(b-3\right)\left(b+3\right)} times \frac{b^{2}+9}{b^{2}+9}. Multiply \frac{1}{b^{2}+9} times \frac{\left(b-3\right)\left(b+3\right)}{\left(b-3\right)\left(b+3\right)}.
\frac{b^{2}+9-\left(b-3\right)\left(b+3\right)}{\left(b-3\right)\left(b+3\right)\left(b^{2}+9\right)}\left(1-\frac{9}{b^{2}}\right)\left(1+\frac{b^{2}}{9}\right)
Since \frac{b^{2}+9}{\left(b-3\right)\left(b+3\right)\left(b^{2}+9\right)} and \frac{\left(b-3\right)\left(b+3\right)}{\left(b-3\right)\left(b+3\right)\left(b^{2}+9\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{b^{2}+9-b^{2}-3b+3b+9}{\left(b-3\right)\left(b+3\right)\left(b^{2}+9\right)}\left(1-\frac{9}{b^{2}}\right)\left(1+\frac{b^{2}}{9}\right)
Do the multiplications in b^{2}+9-\left(b-3\right)\left(b+3\right).
\frac{18}{\left(b-3\right)\left(b+3\right)\left(b^{2}+9\right)}\left(1-\frac{9}{b^{2}}\right)\left(1+\frac{b^{2}}{9}\right)
Combine like terms in b^{2}+9-b^{2}-3b+3b+9.
\frac{18}{\left(b-3\right)\left(b+3\right)\left(b^{2}+9\right)}\left(\frac{b^{2}}{b^{2}}-\frac{9}{b^{2}}\right)\left(1+\frac{b^{2}}{9}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{b^{2}}{b^{2}}.
\frac{18}{\left(b-3\right)\left(b+3\right)\left(b^{2}+9\right)}\times \frac{b^{2}-9}{b^{2}}\left(1+\frac{b^{2}}{9}\right)
Since \frac{b^{2}}{b^{2}} and \frac{9}{b^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{18}{\left(b-3\right)\left(b+3\right)\left(b^{2}+9\right)}\times \frac{b^{2}-9}{b^{2}}\left(\frac{9}{9}+\frac{b^{2}}{9}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{9}{9}.
\frac{18}{\left(b-3\right)\left(b+3\right)\left(b^{2}+9\right)}\times \frac{b^{2}-9}{b^{2}}\times \frac{9+b^{2}}{9}
Since \frac{9}{9} and \frac{b^{2}}{9} have the same denominator, add them by adding their numerators.
\frac{18\left(b^{2}-9\right)}{\left(b-3\right)\left(b+3\right)\left(b^{2}+9\right)b^{2}}\times \frac{9+b^{2}}{9}
Multiply \frac{18}{\left(b-3\right)\left(b+3\right)\left(b^{2}+9\right)} times \frac{b^{2}-9}{b^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{18\left(b^{2}-9\right)\left(9+b^{2}\right)}{\left(b-3\right)\left(b+3\right)\left(b^{2}+9\right)b^{2}\times 9}
Multiply \frac{18\left(b^{2}-9\right)}{\left(b-3\right)\left(b+3\right)\left(b^{2}+9\right)b^{2}} times \frac{9+b^{2}}{9} by multiplying numerator times numerator and denominator times denominator.
\frac{2\left(b^{2}-9\right)}{\left(b-3\right)\left(b+3\right)b^{2}}
Cancel out 9\left(b^{2}+9\right) in both numerator and denominator.
\frac{2\left(b-3\right)\left(b+3\right)}{\left(b-3\right)\left(b+3\right)b^{2}}
Factor the expressions that are not already factored.
\frac{2}{b^{2}}
Cancel out \left(b-3\right)\left(b+3\right) in both numerator and denominator.
\left(\frac{1}{\left(b-3\right)\left(b+3\right)}-\frac{1}{b^{2}+9}\right)\left(1-\frac{9}{b^{2}}\right)\left(1+\frac{b^{2}}{9}\right)
Factor b^{2}-9.
\left(\frac{b^{2}+9}{\left(b-3\right)\left(b+3\right)\left(b^{2}+9\right)}-\frac{\left(b-3\right)\left(b+3\right)}{\left(b-3\right)\left(b+3\right)\left(b^{2}+9\right)}\right)\left(1-\frac{9}{b^{2}}\right)\left(1+\frac{b^{2}}{9}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(b-3\right)\left(b+3\right) and b^{2}+9 is \left(b-3\right)\left(b+3\right)\left(b^{2}+9\right). Multiply \frac{1}{\left(b-3\right)\left(b+3\right)} times \frac{b^{2}+9}{b^{2}+9}. Multiply \frac{1}{b^{2}+9} times \frac{\left(b-3\right)\left(b+3\right)}{\left(b-3\right)\left(b+3\right)}.
\frac{b^{2}+9-\left(b-3\right)\left(b+3\right)}{\left(b-3\right)\left(b+3\right)\left(b^{2}+9\right)}\left(1-\frac{9}{b^{2}}\right)\left(1+\frac{b^{2}}{9}\right)
Since \frac{b^{2}+9}{\left(b-3\right)\left(b+3\right)\left(b^{2}+9\right)} and \frac{\left(b-3\right)\left(b+3\right)}{\left(b-3\right)\left(b+3\right)\left(b^{2}+9\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{b^{2}+9-b^{2}-3b+3b+9}{\left(b-3\right)\left(b+3\right)\left(b^{2}+9\right)}\left(1-\frac{9}{b^{2}}\right)\left(1+\frac{b^{2}}{9}\right)
Do the multiplications in b^{2}+9-\left(b-3\right)\left(b+3\right).
\frac{18}{\left(b-3\right)\left(b+3\right)\left(b^{2}+9\right)}\left(1-\frac{9}{b^{2}}\right)\left(1+\frac{b^{2}}{9}\right)
Combine like terms in b^{2}+9-b^{2}-3b+3b+9.
\frac{18}{\left(b-3\right)\left(b+3\right)\left(b^{2}+9\right)}\left(\frac{b^{2}}{b^{2}}-\frac{9}{b^{2}}\right)\left(1+\frac{b^{2}}{9}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{b^{2}}{b^{2}}.
\frac{18}{\left(b-3\right)\left(b+3\right)\left(b^{2}+9\right)}\times \frac{b^{2}-9}{b^{2}}\left(1+\frac{b^{2}}{9}\right)
Since \frac{b^{2}}{b^{2}} and \frac{9}{b^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{18}{\left(b-3\right)\left(b+3\right)\left(b^{2}+9\right)}\times \frac{b^{2}-9}{b^{2}}\left(\frac{9}{9}+\frac{b^{2}}{9}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{9}{9}.
\frac{18}{\left(b-3\right)\left(b+3\right)\left(b^{2}+9\right)}\times \frac{b^{2}-9}{b^{2}}\times \frac{9+b^{2}}{9}
Since \frac{9}{9} and \frac{b^{2}}{9} have the same denominator, add them by adding their numerators.
\frac{18\left(b^{2}-9\right)}{\left(b-3\right)\left(b+3\right)\left(b^{2}+9\right)b^{2}}\times \frac{9+b^{2}}{9}
Multiply \frac{18}{\left(b-3\right)\left(b+3\right)\left(b^{2}+9\right)} times \frac{b^{2}-9}{b^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{18\left(b^{2}-9\right)\left(9+b^{2}\right)}{\left(b-3\right)\left(b+3\right)\left(b^{2}+9\right)b^{2}\times 9}
Multiply \frac{18\left(b^{2}-9\right)}{\left(b-3\right)\left(b+3\right)\left(b^{2}+9\right)b^{2}} times \frac{9+b^{2}}{9} by multiplying numerator times numerator and denominator times denominator.
\frac{2\left(b^{2}-9\right)}{\left(b-3\right)\left(b+3\right)b^{2}}
Cancel out 9\left(b^{2}+9\right) in both numerator and denominator.
\frac{2\left(b-3\right)\left(b+3\right)}{\left(b-3\right)\left(b+3\right)b^{2}}
Factor the expressions that are not already factored.
\frac{2}{b^{2}}
Cancel out \left(b-3\right)\left(b+3\right) in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}