Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{a-b}-\frac{b}{a^{2}-b^{2}}+\frac{a\left(a-b\right)}{\left(a-b\right)^{2}}
Factor the expressions that are not already factored in \frac{a^{2}-ab}{a^{2}-2ab+b^{2}}.
\frac{1}{a-b}-\frac{b}{a^{2}-b^{2}}+\frac{a}{a-b}
Cancel out a-b in both numerator and denominator.
\frac{1}{a-b}-\frac{b}{\left(a+b\right)\left(a-b\right)}+\frac{a}{a-b}
Factor a^{2}-b^{2}.
\frac{a+b}{\left(a+b\right)\left(a-b\right)}-\frac{b}{\left(a+b\right)\left(a-b\right)}+\frac{a}{a-b}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-b and \left(a+b\right)\left(a-b\right) is \left(a+b\right)\left(a-b\right). Multiply \frac{1}{a-b} times \frac{a+b}{a+b}.
\frac{a+b-b}{\left(a+b\right)\left(a-b\right)}+\frac{a}{a-b}
Since \frac{a+b}{\left(a+b\right)\left(a-b\right)} and \frac{b}{\left(a+b\right)\left(a-b\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a}{\left(a+b\right)\left(a-b\right)}+\frac{a}{a-b}
Combine like terms in a+b-b.
\frac{a}{\left(a+b\right)\left(a-b\right)}+\frac{a\left(a+b\right)}{\left(a+b\right)\left(a-b\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a+b\right)\left(a-b\right) and a-b is \left(a+b\right)\left(a-b\right). Multiply \frac{a}{a-b} times \frac{a+b}{a+b}.
\frac{a+a\left(a+b\right)}{\left(a+b\right)\left(a-b\right)}
Since \frac{a}{\left(a+b\right)\left(a-b\right)} and \frac{a\left(a+b\right)}{\left(a+b\right)\left(a-b\right)} have the same denominator, add them by adding their numerators.
\frac{a+a^{2}+ab}{\left(a+b\right)\left(a-b\right)}
Do the multiplications in a+a\left(a+b\right).
\frac{a+a^{2}+ab}{a^{2}-b^{2}}
Expand \left(a+b\right)\left(a-b\right).
\frac{1}{a-b}-\frac{b}{a^{2}-b^{2}}+\frac{a\left(a-b\right)}{\left(a-b\right)^{2}}
Factor the expressions that are not already factored in \frac{a^{2}-ab}{a^{2}-2ab+b^{2}}.
\frac{1}{a-b}-\frac{b}{a^{2}-b^{2}}+\frac{a}{a-b}
Cancel out a-b in both numerator and denominator.
\frac{1}{a-b}-\frac{b}{\left(a+b\right)\left(a-b\right)}+\frac{a}{a-b}
Factor a^{2}-b^{2}.
\frac{a+b}{\left(a+b\right)\left(a-b\right)}-\frac{b}{\left(a+b\right)\left(a-b\right)}+\frac{a}{a-b}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-b and \left(a+b\right)\left(a-b\right) is \left(a+b\right)\left(a-b\right). Multiply \frac{1}{a-b} times \frac{a+b}{a+b}.
\frac{a+b-b}{\left(a+b\right)\left(a-b\right)}+\frac{a}{a-b}
Since \frac{a+b}{\left(a+b\right)\left(a-b\right)} and \frac{b}{\left(a+b\right)\left(a-b\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a}{\left(a+b\right)\left(a-b\right)}+\frac{a}{a-b}
Combine like terms in a+b-b.
\frac{a}{\left(a+b\right)\left(a-b\right)}+\frac{a\left(a+b\right)}{\left(a+b\right)\left(a-b\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a+b\right)\left(a-b\right) and a-b is \left(a+b\right)\left(a-b\right). Multiply \frac{a}{a-b} times \frac{a+b}{a+b}.
\frac{a+a\left(a+b\right)}{\left(a+b\right)\left(a-b\right)}
Since \frac{a}{\left(a+b\right)\left(a-b\right)} and \frac{a\left(a+b\right)}{\left(a+b\right)\left(a-b\right)} have the same denominator, add them by adding their numerators.
\frac{a+a^{2}+ab}{\left(a+b\right)\left(a-b\right)}
Do the multiplications in a+a\left(a+b\right).
\frac{a+a^{2}+ab}{a^{2}-b^{2}}
Expand \left(a+b\right)\left(a-b\right).