Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\frac{b}{ab}-\frac{a}{ab}\right)\left(\frac{1}{a}+\frac{1}{b}\right)}{\frac{a}{b}-\frac{b}{a}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a and b is ab. Multiply \frac{1}{a} times \frac{b}{b}. Multiply \frac{1}{b} times \frac{a}{a}.
\frac{\frac{b-a}{ab}\left(\frac{1}{a}+\frac{1}{b}\right)}{\frac{a}{b}-\frac{b}{a}}
Since \frac{b}{ab} and \frac{a}{ab} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{b-a}{ab}\left(\frac{b}{ab}+\frac{a}{ab}\right)}{\frac{a}{b}-\frac{b}{a}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a and b is ab. Multiply \frac{1}{a} times \frac{b}{b}. Multiply \frac{1}{b} times \frac{a}{a}.
\frac{\frac{b-a}{ab}\times \frac{b+a}{ab}}{\frac{a}{b}-\frac{b}{a}}
Since \frac{b}{ab} and \frac{a}{ab} have the same denominator, add them by adding their numerators.
\frac{\frac{\left(b-a\right)\left(b+a\right)}{abab}}{\frac{a}{b}-\frac{b}{a}}
Multiply \frac{b-a}{ab} times \frac{b+a}{ab} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{\left(b-a\right)\left(b+a\right)}{abab}}{\frac{aa}{ab}-\frac{bb}{ab}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b and a is ab. Multiply \frac{a}{b} times \frac{a}{a}. Multiply \frac{b}{a} times \frac{b}{b}.
\frac{\frac{\left(b-a\right)\left(b+a\right)}{abab}}{\frac{aa-bb}{ab}}
Since \frac{aa}{ab} and \frac{bb}{ab} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{\left(b-a\right)\left(b+a\right)}{abab}}{\frac{a^{2}-b^{2}}{ab}}
Do the multiplications in aa-bb.
\frac{\left(b-a\right)\left(b+a\right)ab}{abab\left(a^{2}-b^{2}\right)}
Divide \frac{\left(b-a\right)\left(b+a\right)}{abab} by \frac{a^{2}-b^{2}}{ab} by multiplying \frac{\left(b-a\right)\left(b+a\right)}{abab} by the reciprocal of \frac{a^{2}-b^{2}}{ab}.
\frac{\left(a+b\right)\left(-a+b\right)}{ab\left(a^{2}-b^{2}\right)}
Cancel out ab in both numerator and denominator.
\frac{\left(a+b\right)\left(-a+b\right)}{ab\left(a+b\right)\left(a-b\right)}
Factor the expressions that are not already factored.
\frac{-\left(a+b\right)\left(a-b\right)}{ab\left(a+b\right)\left(a-b\right)}
Extract the negative sign in -a+b.
\frac{-1}{ab}
Cancel out \left(a+b\right)\left(a-b\right) in both numerator and denominator.
\frac{\left(\frac{b}{ab}-\frac{a}{ab}\right)\left(\frac{1}{a}+\frac{1}{b}\right)}{\frac{a}{b}-\frac{b}{a}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a and b is ab. Multiply \frac{1}{a} times \frac{b}{b}. Multiply \frac{1}{b} times \frac{a}{a}.
\frac{\frac{b-a}{ab}\left(\frac{1}{a}+\frac{1}{b}\right)}{\frac{a}{b}-\frac{b}{a}}
Since \frac{b}{ab} and \frac{a}{ab} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{b-a}{ab}\left(\frac{b}{ab}+\frac{a}{ab}\right)}{\frac{a}{b}-\frac{b}{a}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a and b is ab. Multiply \frac{1}{a} times \frac{b}{b}. Multiply \frac{1}{b} times \frac{a}{a}.
\frac{\frac{b-a}{ab}\times \frac{b+a}{ab}}{\frac{a}{b}-\frac{b}{a}}
Since \frac{b}{ab} and \frac{a}{ab} have the same denominator, add them by adding their numerators.
\frac{\frac{\left(b-a\right)\left(b+a\right)}{abab}}{\frac{a}{b}-\frac{b}{a}}
Multiply \frac{b-a}{ab} times \frac{b+a}{ab} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{\left(b-a\right)\left(b+a\right)}{abab}}{\frac{aa}{ab}-\frac{bb}{ab}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b and a is ab. Multiply \frac{a}{b} times \frac{a}{a}. Multiply \frac{b}{a} times \frac{b}{b}.
\frac{\frac{\left(b-a\right)\left(b+a\right)}{abab}}{\frac{aa-bb}{ab}}
Since \frac{aa}{ab} and \frac{bb}{ab} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{\left(b-a\right)\left(b+a\right)}{abab}}{\frac{a^{2}-b^{2}}{ab}}
Do the multiplications in aa-bb.
\frac{\left(b-a\right)\left(b+a\right)ab}{abab\left(a^{2}-b^{2}\right)}
Divide \frac{\left(b-a\right)\left(b+a\right)}{abab} by \frac{a^{2}-b^{2}}{ab} by multiplying \frac{\left(b-a\right)\left(b+a\right)}{abab} by the reciprocal of \frac{a^{2}-b^{2}}{ab}.
\frac{\left(a+b\right)\left(-a+b\right)}{ab\left(a^{2}-b^{2}\right)}
Cancel out ab in both numerator and denominator.
\frac{\left(a+b\right)\left(-a+b\right)}{ab\left(a+b\right)\left(a-b\right)}
Factor the expressions that are not already factored.
\frac{-\left(a+b\right)\left(a-b\right)}{ab\left(a+b\right)\left(a-b\right)}
Extract the negative sign in -a+b.
\frac{-1}{ab}
Cancel out \left(a+b\right)\left(a-b\right) in both numerator and denominator.