Evaluate
b-a
Expand
b-a
Share
Copied to clipboard
\left(\frac{b}{ab}-\frac{a}{ab}\right)ab
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a and b is ab. Multiply \frac{1}{a} times \frac{b}{b}. Multiply \frac{1}{b} times \frac{a}{a}.
\frac{b-a}{ab}ab
Since \frac{b}{ab} and \frac{a}{ab} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(b-a\right)a}{ab}b
Express \frac{b-a}{ab}a as a single fraction.
\frac{-a+b}{b}b
Cancel out a in both numerator and denominator.
-a+b
Cancel out b and b.
\left(\frac{b}{ab}-\frac{a}{ab}\right)ab
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a and b is ab. Multiply \frac{1}{a} times \frac{b}{b}. Multiply \frac{1}{b} times \frac{a}{a}.
\frac{b-a}{ab}ab
Since \frac{b}{ab} and \frac{a}{ab} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(b-a\right)a}{ab}b
Express \frac{b-a}{ab}a as a single fraction.
\frac{-a+b}{b}b
Cancel out a in both numerator and denominator.
-a+b
Cancel out b and b.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}