Solve for a
a\neq 0
b\neq 0
Solve for b
b\neq 0
a\neq 0
Share
Copied to clipboard
\left(\frac{1}{ab}\right)^{-1}=ab
Multiply \frac{1}{a} times \frac{1}{b} by multiplying numerator times numerator and denominator times denominator.
\frac{1^{-1}}{\left(ab\right)^{-1}}=ab
To raise \frac{1}{ab} to a power, raise both numerator and denominator to the power and then divide.
\frac{1}{\left(ab\right)^{-1}}=ab
Calculate 1 to the power of -1 and get 1.
\frac{1}{a^{-1}b^{-1}}=ab
Expand \left(ab\right)^{-1}.
\frac{1}{a^{-1}b^{-1}}-ab=0
Subtract ab from both sides.
\frac{1}{a^{-1}b^{-1}}-\frac{aba^{-1}b^{-1}}{a^{-1}b^{-1}}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply ab times \frac{a^{-1}b^{-1}}{a^{-1}b^{-1}}.
\frac{1-aba^{-1}b^{-1}}{a^{-1}b^{-1}}=0
Since \frac{1}{a^{-1}b^{-1}} and \frac{aba^{-1}b^{-1}}{a^{-1}b^{-1}} have the same denominator, subtract them by subtracting their numerators.
\frac{1-1}{a^{-1}b^{-1}}=0
Do the multiplications in 1-aba^{-1}b^{-1}.
\frac{0}{a^{-1}b^{-1}}=0
Do the calculations in 1-1.
\frac{0}{\frac{1}{a}\times \frac{1}{b}}=0
Reorder the terms.
\frac{0}{\frac{1}{ab}}=0
Multiply \frac{1}{a} times \frac{1}{b} by multiplying numerator times numerator and denominator times denominator.
0ab=0
Variable a cannot be equal to 0 since division by zero is not defined. Divide 0 by \frac{1}{ab} by multiplying 0 by the reciprocal of \frac{1}{ab}.
0=0
Anything times zero gives zero.
\text{true}
Compare 0 and 0.
a\in \mathrm{R}
This is true for any a.
a\in \mathrm{R}\setminus 0
Variable a cannot be equal to 0.
\left(\frac{1}{ab}\right)^{-1}=ab
Multiply \frac{1}{a} times \frac{1}{b} by multiplying numerator times numerator and denominator times denominator.
\frac{1^{-1}}{\left(ab\right)^{-1}}=ab
To raise \frac{1}{ab} to a power, raise both numerator and denominator to the power and then divide.
\frac{1}{\left(ab\right)^{-1}}=ab
Calculate 1 to the power of -1 and get 1.
\frac{1}{a^{-1}b^{-1}}=ab
Expand \left(ab\right)^{-1}.
\frac{1}{a^{-1}b^{-1}}-ab=0
Subtract ab from both sides.
\frac{1}{a^{-1}b^{-1}}-\frac{aba^{-1}b^{-1}}{a^{-1}b^{-1}}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply ab times \frac{a^{-1}b^{-1}}{a^{-1}b^{-1}}.
\frac{1-aba^{-1}b^{-1}}{a^{-1}b^{-1}}=0
Since \frac{1}{a^{-1}b^{-1}} and \frac{aba^{-1}b^{-1}}{a^{-1}b^{-1}} have the same denominator, subtract them by subtracting their numerators.
\frac{1-1}{a^{-1}b^{-1}}=0
Do the multiplications in 1-aba^{-1}b^{-1}.
\frac{0}{a^{-1}b^{-1}}=0
Do the calculations in 1-1.
\frac{0}{\frac{1}{a}\times \frac{1}{b}}=0
Reorder the terms.
\frac{0}{\frac{1}{ab}}=0
Multiply \frac{1}{a} times \frac{1}{b} by multiplying numerator times numerator and denominator times denominator.
0ab=0
Variable b cannot be equal to 0 since division by zero is not defined. Divide 0 by \frac{1}{ab} by multiplying 0 by the reciprocal of \frac{1}{ab}.
0=0
Anything times zero gives zero.
\text{true}
Compare 0 and 0.
b\in \mathrm{R}
This is true for any b.
b\in \mathrm{R}\setminus 0
Variable b cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}