Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. a
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{1}{a^{\frac{7}{3}}}\right)^{-\frac{5}{7}}
Use the rules of exponents to simplify the expression.
\frac{1^{-\frac{5}{7}}}{\left(a^{\frac{7}{3}}\right)^{-\frac{5}{7}}}
To raise the quotient of two numbers to a power, raise each number to the power and then divide.
\frac{1}{a^{\frac{7}{3}\left(-\frac{5}{7}\right)}}
To raise a power to another power, multiply the exponents.
\frac{a^{\frac{5}{3}}}{1}
Multiply \frac{7}{3} times -\frac{5}{7} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{1^{-\frac{5}{7}}}{\left(a^{\frac{7}{3}}\right)^{-\frac{5}{7}}})
To raise \frac{1}{a^{\frac{7}{3}}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{1^{-\frac{5}{7}}}{a^{-\frac{5}{3}}})
To raise a power to another power, multiply the exponents. Multiply \frac{7}{3} and -\frac{5}{7} to get -\frac{5}{3}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{1}{a^{-\frac{5}{3}}})
Calculate 1 to the power of -\frac{5}{7} and get 1.
-\left(a^{-\frac{5}{3}}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}a}(a^{-\frac{5}{3}})
If F is the composition of two differentiable functions f\left(u\right) and u=g\left(x\right), that is, if F\left(x\right)=f\left(g\left(x\right)\right), then the derivative of F is the derivative of f with respect to u times the derivative of g with respect to x, that is, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(a^{-\frac{5}{3}}\right)^{-2}\left(-\frac{5}{3}\right)a^{-\frac{5}{3}-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\frac{5}{3}a^{-\frac{8}{3}}\left(a^{-\frac{5}{3}}\right)^{-2}
Simplify.