Evaluate
\frac{n^{6}}{81}-16
Expand
\frac{n^{6}}{81}-16
Share
Copied to clipboard
\left(\frac{1}{9}n^{3}+4\right)\left(\frac{1}{9}n^{2}n-4\right)
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\left(\frac{1}{9}n^{3}+4\right)\left(\frac{1}{9}n^{3}-4\right)
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\left(\frac{1}{9}n^{3}\right)^{2}-16
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 4.
\left(\frac{1}{9}\right)^{2}\left(n^{3}\right)^{2}-16
Expand \left(\frac{1}{9}n^{3}\right)^{2}.
\left(\frac{1}{9}\right)^{2}n^{6}-16
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\frac{1}{81}n^{6}-16
Calculate \frac{1}{9} to the power of 2 and get \frac{1}{81}.
\left(\frac{1}{9}n^{3}+4\right)\left(\frac{1}{9}n^{2}n-4\right)
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\left(\frac{1}{9}n^{3}+4\right)\left(\frac{1}{9}n^{3}-4\right)
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\left(\frac{1}{9}n^{3}\right)^{2}-16
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 4.
\left(\frac{1}{9}\right)^{2}\left(n^{3}\right)^{2}-16
Expand \left(\frac{1}{9}n^{3}\right)^{2}.
\left(\frac{1}{9}\right)^{2}n^{6}-16
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\frac{1}{81}n^{6}-16
Calculate \frac{1}{9} to the power of 2 and get \frac{1}{81}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}