Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{1}{9}n^{3}+4\right)\left(\frac{1}{9}n^{2}n-4\right)
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\left(\frac{1}{9}n^{3}+4\right)\left(\frac{1}{9}n^{3}-4\right)
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\left(\frac{1}{9}n^{3}\right)^{2}-16
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 4.
\left(\frac{1}{9}\right)^{2}\left(n^{3}\right)^{2}-16
Expand \left(\frac{1}{9}n^{3}\right)^{2}.
\left(\frac{1}{9}\right)^{2}n^{6}-16
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\frac{1}{81}n^{6}-16
Calculate \frac{1}{9} to the power of 2 and get \frac{1}{81}.
\left(\frac{1}{9}n^{3}+4\right)\left(\frac{1}{9}n^{2}n-4\right)
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\left(\frac{1}{9}n^{3}+4\right)\left(\frac{1}{9}n^{3}-4\right)
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\left(\frac{1}{9}n^{3}\right)^{2}-16
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 4.
\left(\frac{1}{9}\right)^{2}\left(n^{3}\right)^{2}-16
Expand \left(\frac{1}{9}n^{3}\right)^{2}.
\left(\frac{1}{9}\right)^{2}n^{6}-16
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\frac{1}{81}n^{6}-16
Calculate \frac{1}{9} to the power of 2 and get \frac{1}{81}.