Evaluate
-\frac{3}{5}=-0.6
Factor
-\frac{3}{5} = -0.6
Share
Copied to clipboard
\frac{\frac{1}{6}+\frac{3+1}{3}}{4-\frac{13}{2}}
Multiply 1 and 3 to get 3.
\frac{\frac{1}{6}+\frac{4}{3}}{4-\frac{13}{2}}
Add 3 and 1 to get 4.
\frac{\frac{1}{6}+\frac{8}{6}}{4-\frac{13}{2}}
Least common multiple of 6 and 3 is 6. Convert \frac{1}{6} and \frac{4}{3} to fractions with denominator 6.
\frac{\frac{1+8}{6}}{4-\frac{13}{2}}
Since \frac{1}{6} and \frac{8}{6} have the same denominator, add them by adding their numerators.
\frac{\frac{9}{6}}{4-\frac{13}{2}}
Add 1 and 8 to get 9.
\frac{\frac{3}{2}}{4-\frac{13}{2}}
Reduce the fraction \frac{9}{6} to lowest terms by extracting and canceling out 3.
\frac{\frac{3}{2}}{\frac{8}{2}-\frac{13}{2}}
Convert 4 to fraction \frac{8}{2}.
\frac{\frac{3}{2}}{\frac{8-13}{2}}
Since \frac{8}{2} and \frac{13}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{3}{2}}{-\frac{5}{2}}
Subtract 13 from 8 to get -5.
\frac{3}{2}\left(-\frac{2}{5}\right)
Divide \frac{3}{2} by -\frac{5}{2} by multiplying \frac{3}{2} by the reciprocal of -\frac{5}{2}.
\frac{3\left(-2\right)}{2\times 5}
Multiply \frac{3}{2} times -\frac{2}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{-6}{10}
Do the multiplications in the fraction \frac{3\left(-2\right)}{2\times 5}.
-\frac{3}{5}
Reduce the fraction \frac{-6}{10} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}