Solve for x
x = \frac{79}{18} = 4\frac{7}{18} \approx 4.388888889
Graph
Share
Copied to clipboard
\frac{\frac{1}{6}+\frac{1}{3}x}{\frac{8}{9}}=\frac{13}{2}-\frac{14}{3}
Reduce the fraction \frac{3}{9} to lowest terms by extracting and canceling out 3.
\frac{\frac{1}{6}+\frac{1}{3}x}{\frac{8}{9}}=\frac{39}{6}-\frac{28}{6}
Least common multiple of 2 and 3 is 6. Convert \frac{13}{2} and \frac{14}{3} to fractions with denominator 6.
\frac{\frac{1}{6}+\frac{1}{3}x}{\frac{8}{9}}=\frac{39-28}{6}
Since \frac{39}{6} and \frac{28}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{1}{6}+\frac{1}{3}x}{\frac{8}{9}}=\frac{11}{6}
Subtract 28 from 39 to get 11.
\frac{\frac{1}{6}}{\frac{8}{9}}+\frac{\frac{1}{3}x}{\frac{8}{9}}=\frac{11}{6}
Divide each term of \frac{1}{6}+\frac{1}{3}x by \frac{8}{9} to get \frac{\frac{1}{6}}{\frac{8}{9}}+\frac{\frac{1}{3}x}{\frac{8}{9}}.
\frac{1}{6}\times \frac{9}{8}+\frac{\frac{1}{3}x}{\frac{8}{9}}=\frac{11}{6}
Divide \frac{1}{6} by \frac{8}{9} by multiplying \frac{1}{6} by the reciprocal of \frac{8}{9}.
\frac{1\times 9}{6\times 8}+\frac{\frac{1}{3}x}{\frac{8}{9}}=\frac{11}{6}
Multiply \frac{1}{6} times \frac{9}{8} by multiplying numerator times numerator and denominator times denominator.
\frac{9}{48}+\frac{\frac{1}{3}x}{\frac{8}{9}}=\frac{11}{6}
Do the multiplications in the fraction \frac{1\times 9}{6\times 8}.
\frac{3}{16}+\frac{\frac{1}{3}x}{\frac{8}{9}}=\frac{11}{6}
Reduce the fraction \frac{9}{48} to lowest terms by extracting and canceling out 3.
\frac{3}{16}+\frac{3}{8}x=\frac{11}{6}
Divide \frac{1}{3}x by \frac{8}{9} to get \frac{3}{8}x.
\frac{3}{8}x=\frac{11}{6}-\frac{3}{16}
Subtract \frac{3}{16} from both sides.
\frac{3}{8}x=\frac{88}{48}-\frac{9}{48}
Least common multiple of 6 and 16 is 48. Convert \frac{11}{6} and \frac{3}{16} to fractions with denominator 48.
\frac{3}{8}x=\frac{88-9}{48}
Since \frac{88}{48} and \frac{9}{48} have the same denominator, subtract them by subtracting their numerators.
\frac{3}{8}x=\frac{79}{48}
Subtract 9 from 88 to get 79.
x=\frac{79}{48}\times \frac{8}{3}
Multiply both sides by \frac{8}{3}, the reciprocal of \frac{3}{8}.
x=\frac{79\times 8}{48\times 3}
Multiply \frac{79}{48} times \frac{8}{3} by multiplying numerator times numerator and denominator times denominator.
x=\frac{632}{144}
Do the multiplications in the fraction \frac{79\times 8}{48\times 3}.
x=\frac{79}{18}
Reduce the fraction \frac{632}{144} to lowest terms by extracting and canceling out 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}