Evaluate
\frac{5}{36}\approx 0.138888889
Factor
\frac{5}{2 ^ {2} \cdot 3 ^ {2}} = 0.1388888888888889
Share
Copied to clipboard
\left(\frac{1}{6}+\frac{4}{6}-\frac{5}{12}\right)\left(1-\frac{2}{3}\right)
Least common multiple of 6 and 3 is 6. Convert \frac{1}{6} and \frac{2}{3} to fractions with denominator 6.
\left(\frac{1+4}{6}-\frac{5}{12}\right)\left(1-\frac{2}{3}\right)
Since \frac{1}{6} and \frac{4}{6} have the same denominator, add them by adding their numerators.
\left(\frac{5}{6}-\frac{5}{12}\right)\left(1-\frac{2}{3}\right)
Add 1 and 4 to get 5.
\left(\frac{10}{12}-\frac{5}{12}\right)\left(1-\frac{2}{3}\right)
Least common multiple of 6 and 12 is 12. Convert \frac{5}{6} and \frac{5}{12} to fractions with denominator 12.
\frac{10-5}{12}\left(1-\frac{2}{3}\right)
Since \frac{10}{12} and \frac{5}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{5}{12}\left(1-\frac{2}{3}\right)
Subtract 5 from 10 to get 5.
\frac{5}{12}\left(\frac{3}{3}-\frac{2}{3}\right)
Convert 1 to fraction \frac{3}{3}.
\frac{5}{12}\times \frac{3-2}{3}
Since \frac{3}{3} and \frac{2}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{5}{12}\times \frac{1}{3}
Subtract 2 from 3 to get 1.
\frac{5\times 1}{12\times 3}
Multiply \frac{5}{12} times \frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{5}{36}
Do the multiplications in the fraction \frac{5\times 1}{12\times 3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}