Evaluate
\frac{\left(3x-y\right)\left(9x+5\right)}{405}
Expand
-\frac{xy}{45}+\frac{x^{2}}{15}+\frac{x}{27}-\frac{y}{81}
Share
Copied to clipboard
\frac{1}{5}x\times \frac{1}{3}x+\frac{1}{5}x\left(-\frac{1}{9}\right)y+\frac{1}{9}\times \frac{1}{3}x+\frac{1}{9}\left(-\frac{1}{9}\right)y
Apply the distributive property by multiplying each term of \frac{1}{5}x+\frac{1}{9} by each term of \frac{1}{3}x-\frac{1}{9}y.
\frac{1}{5}x^{2}\times \frac{1}{3}+\frac{1}{5}x\left(-\frac{1}{9}\right)y+\frac{1}{9}\times \frac{1}{3}x+\frac{1}{9}\left(-\frac{1}{9}\right)y
Multiply x and x to get x^{2}.
\frac{1\times 1}{5\times 3}x^{2}+\frac{1}{5}x\left(-\frac{1}{9}\right)y+\frac{1}{9}\times \frac{1}{3}x+\frac{1}{9}\left(-\frac{1}{9}\right)y
Multiply \frac{1}{5} times \frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{15}x^{2}+\frac{1}{5}x\left(-\frac{1}{9}\right)y+\frac{1}{9}\times \frac{1}{3}x+\frac{1}{9}\left(-\frac{1}{9}\right)y
Do the multiplications in the fraction \frac{1\times 1}{5\times 3}.
\frac{1}{15}x^{2}+\frac{1\left(-1\right)}{5\times 9}xy+\frac{1}{9}\times \frac{1}{3}x+\frac{1}{9}\left(-\frac{1}{9}\right)y
Multiply \frac{1}{5} times -\frac{1}{9} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{15}x^{2}+\frac{-1}{45}xy+\frac{1}{9}\times \frac{1}{3}x+\frac{1}{9}\left(-\frac{1}{9}\right)y
Do the multiplications in the fraction \frac{1\left(-1\right)}{5\times 9}.
\frac{1}{15}x^{2}-\frac{1}{45}xy+\frac{1}{9}\times \frac{1}{3}x+\frac{1}{9}\left(-\frac{1}{9}\right)y
Fraction \frac{-1}{45} can be rewritten as -\frac{1}{45} by extracting the negative sign.
\frac{1}{15}x^{2}-\frac{1}{45}xy+\frac{1\times 1}{9\times 3}x+\frac{1}{9}\left(-\frac{1}{9}\right)y
Multiply \frac{1}{9} times \frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{15}x^{2}-\frac{1}{45}xy+\frac{1}{27}x+\frac{1}{9}\left(-\frac{1}{9}\right)y
Do the multiplications in the fraction \frac{1\times 1}{9\times 3}.
\frac{1}{15}x^{2}-\frac{1}{45}xy+\frac{1}{27}x+\frac{1\left(-1\right)}{9\times 9}y
Multiply \frac{1}{9} times -\frac{1}{9} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{15}x^{2}-\frac{1}{45}xy+\frac{1}{27}x+\frac{-1}{81}y
Do the multiplications in the fraction \frac{1\left(-1\right)}{9\times 9}.
\frac{1}{15}x^{2}-\frac{1}{45}xy+\frac{1}{27}x-\frac{1}{81}y
Fraction \frac{-1}{81} can be rewritten as -\frac{1}{81} by extracting the negative sign.
\frac{1}{5}x\times \frac{1}{3}x+\frac{1}{5}x\left(-\frac{1}{9}\right)y+\frac{1}{9}\times \frac{1}{3}x+\frac{1}{9}\left(-\frac{1}{9}\right)y
Apply the distributive property by multiplying each term of \frac{1}{5}x+\frac{1}{9} by each term of \frac{1}{3}x-\frac{1}{9}y.
\frac{1}{5}x^{2}\times \frac{1}{3}+\frac{1}{5}x\left(-\frac{1}{9}\right)y+\frac{1}{9}\times \frac{1}{3}x+\frac{1}{9}\left(-\frac{1}{9}\right)y
Multiply x and x to get x^{2}.
\frac{1\times 1}{5\times 3}x^{2}+\frac{1}{5}x\left(-\frac{1}{9}\right)y+\frac{1}{9}\times \frac{1}{3}x+\frac{1}{9}\left(-\frac{1}{9}\right)y
Multiply \frac{1}{5} times \frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{15}x^{2}+\frac{1}{5}x\left(-\frac{1}{9}\right)y+\frac{1}{9}\times \frac{1}{3}x+\frac{1}{9}\left(-\frac{1}{9}\right)y
Do the multiplications in the fraction \frac{1\times 1}{5\times 3}.
\frac{1}{15}x^{2}+\frac{1\left(-1\right)}{5\times 9}xy+\frac{1}{9}\times \frac{1}{3}x+\frac{1}{9}\left(-\frac{1}{9}\right)y
Multiply \frac{1}{5} times -\frac{1}{9} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{15}x^{2}+\frac{-1}{45}xy+\frac{1}{9}\times \frac{1}{3}x+\frac{1}{9}\left(-\frac{1}{9}\right)y
Do the multiplications in the fraction \frac{1\left(-1\right)}{5\times 9}.
\frac{1}{15}x^{2}-\frac{1}{45}xy+\frac{1}{9}\times \frac{1}{3}x+\frac{1}{9}\left(-\frac{1}{9}\right)y
Fraction \frac{-1}{45} can be rewritten as -\frac{1}{45} by extracting the negative sign.
\frac{1}{15}x^{2}-\frac{1}{45}xy+\frac{1\times 1}{9\times 3}x+\frac{1}{9}\left(-\frac{1}{9}\right)y
Multiply \frac{1}{9} times \frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{15}x^{2}-\frac{1}{45}xy+\frac{1}{27}x+\frac{1}{9}\left(-\frac{1}{9}\right)y
Do the multiplications in the fraction \frac{1\times 1}{9\times 3}.
\frac{1}{15}x^{2}-\frac{1}{45}xy+\frac{1}{27}x+\frac{1\left(-1\right)}{9\times 9}y
Multiply \frac{1}{9} times -\frac{1}{9} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{15}x^{2}-\frac{1}{45}xy+\frac{1}{27}x+\frac{-1}{81}y
Do the multiplications in the fraction \frac{1\left(-1\right)}{9\times 9}.
\frac{1}{15}x^{2}-\frac{1}{45}xy+\frac{1}{27}x-\frac{1}{81}y
Fraction \frac{-1}{81} can be rewritten as -\frac{1}{81} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}