Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{5}x\times \frac{1}{3}x+\frac{1}{5}x\left(-\frac{1}{9}\right)y+\frac{1}{9}\times \frac{1}{3}x+\frac{1}{9}\left(-\frac{1}{9}\right)y
Apply the distributive property by multiplying each term of \frac{1}{5}x+\frac{1}{9} by each term of \frac{1}{3}x-\frac{1}{9}y.
\frac{1}{5}x^{2}\times \frac{1}{3}+\frac{1}{5}x\left(-\frac{1}{9}\right)y+\frac{1}{9}\times \frac{1}{3}x+\frac{1}{9}\left(-\frac{1}{9}\right)y
Multiply x and x to get x^{2}.
\frac{1\times 1}{5\times 3}x^{2}+\frac{1}{5}x\left(-\frac{1}{9}\right)y+\frac{1}{9}\times \frac{1}{3}x+\frac{1}{9}\left(-\frac{1}{9}\right)y
Multiply \frac{1}{5} times \frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{15}x^{2}+\frac{1}{5}x\left(-\frac{1}{9}\right)y+\frac{1}{9}\times \frac{1}{3}x+\frac{1}{9}\left(-\frac{1}{9}\right)y
Do the multiplications in the fraction \frac{1\times 1}{5\times 3}.
\frac{1}{15}x^{2}+\frac{1\left(-1\right)}{5\times 9}xy+\frac{1}{9}\times \frac{1}{3}x+\frac{1}{9}\left(-\frac{1}{9}\right)y
Multiply \frac{1}{5} times -\frac{1}{9} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{15}x^{2}+\frac{-1}{45}xy+\frac{1}{9}\times \frac{1}{3}x+\frac{1}{9}\left(-\frac{1}{9}\right)y
Do the multiplications in the fraction \frac{1\left(-1\right)}{5\times 9}.
\frac{1}{15}x^{2}-\frac{1}{45}xy+\frac{1}{9}\times \frac{1}{3}x+\frac{1}{9}\left(-\frac{1}{9}\right)y
Fraction \frac{-1}{45} can be rewritten as -\frac{1}{45} by extracting the negative sign.
\frac{1}{15}x^{2}-\frac{1}{45}xy+\frac{1\times 1}{9\times 3}x+\frac{1}{9}\left(-\frac{1}{9}\right)y
Multiply \frac{1}{9} times \frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{15}x^{2}-\frac{1}{45}xy+\frac{1}{27}x+\frac{1}{9}\left(-\frac{1}{9}\right)y
Do the multiplications in the fraction \frac{1\times 1}{9\times 3}.
\frac{1}{15}x^{2}-\frac{1}{45}xy+\frac{1}{27}x+\frac{1\left(-1\right)}{9\times 9}y
Multiply \frac{1}{9} times -\frac{1}{9} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{15}x^{2}-\frac{1}{45}xy+\frac{1}{27}x+\frac{-1}{81}y
Do the multiplications in the fraction \frac{1\left(-1\right)}{9\times 9}.
\frac{1}{15}x^{2}-\frac{1}{45}xy+\frac{1}{27}x-\frac{1}{81}y
Fraction \frac{-1}{81} can be rewritten as -\frac{1}{81} by extracting the negative sign.
\frac{1}{5}x\times \frac{1}{3}x+\frac{1}{5}x\left(-\frac{1}{9}\right)y+\frac{1}{9}\times \frac{1}{3}x+\frac{1}{9}\left(-\frac{1}{9}\right)y
Apply the distributive property by multiplying each term of \frac{1}{5}x+\frac{1}{9} by each term of \frac{1}{3}x-\frac{1}{9}y.
\frac{1}{5}x^{2}\times \frac{1}{3}+\frac{1}{5}x\left(-\frac{1}{9}\right)y+\frac{1}{9}\times \frac{1}{3}x+\frac{1}{9}\left(-\frac{1}{9}\right)y
Multiply x and x to get x^{2}.
\frac{1\times 1}{5\times 3}x^{2}+\frac{1}{5}x\left(-\frac{1}{9}\right)y+\frac{1}{9}\times \frac{1}{3}x+\frac{1}{9}\left(-\frac{1}{9}\right)y
Multiply \frac{1}{5} times \frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{15}x^{2}+\frac{1}{5}x\left(-\frac{1}{9}\right)y+\frac{1}{9}\times \frac{1}{3}x+\frac{1}{9}\left(-\frac{1}{9}\right)y
Do the multiplications in the fraction \frac{1\times 1}{5\times 3}.
\frac{1}{15}x^{2}+\frac{1\left(-1\right)}{5\times 9}xy+\frac{1}{9}\times \frac{1}{3}x+\frac{1}{9}\left(-\frac{1}{9}\right)y
Multiply \frac{1}{5} times -\frac{1}{9} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{15}x^{2}+\frac{-1}{45}xy+\frac{1}{9}\times \frac{1}{3}x+\frac{1}{9}\left(-\frac{1}{9}\right)y
Do the multiplications in the fraction \frac{1\left(-1\right)}{5\times 9}.
\frac{1}{15}x^{2}-\frac{1}{45}xy+\frac{1}{9}\times \frac{1}{3}x+\frac{1}{9}\left(-\frac{1}{9}\right)y
Fraction \frac{-1}{45} can be rewritten as -\frac{1}{45} by extracting the negative sign.
\frac{1}{15}x^{2}-\frac{1}{45}xy+\frac{1\times 1}{9\times 3}x+\frac{1}{9}\left(-\frac{1}{9}\right)y
Multiply \frac{1}{9} times \frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{15}x^{2}-\frac{1}{45}xy+\frac{1}{27}x+\frac{1}{9}\left(-\frac{1}{9}\right)y
Do the multiplications in the fraction \frac{1\times 1}{9\times 3}.
\frac{1}{15}x^{2}-\frac{1}{45}xy+\frac{1}{27}x+\frac{1\left(-1\right)}{9\times 9}y
Multiply \frac{1}{9} times -\frac{1}{9} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{15}x^{2}-\frac{1}{45}xy+\frac{1}{27}x+\frac{-1}{81}y
Do the multiplications in the fraction \frac{1\left(-1\right)}{9\times 9}.
\frac{1}{15}x^{2}-\frac{1}{45}xy+\frac{1}{27}x-\frac{1}{81}y
Fraction \frac{-1}{81} can be rewritten as -\frac{1}{81} by extracting the negative sign.