Solve for x
x=-\frac{3}{5}=-0.6
x=\frac{4}{5}=0.8
Graph
Share
Copied to clipboard
\frac{1}{25}-\frac{2}{5}x+x^{2}+x^{2}=1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{1}{5}-x\right)^{2}.
\frac{1}{25}-\frac{2}{5}x+2x^{2}=1
Combine x^{2} and x^{2} to get 2x^{2}.
\frac{1}{25}-\frac{2}{5}x+2x^{2}-1=0
Subtract 1 from both sides.
-\frac{24}{25}-\frac{2}{5}x+2x^{2}=0
Subtract 1 from \frac{1}{25} to get -\frac{24}{25}.
2x^{2}-\frac{2}{5}x-\frac{24}{25}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-\frac{2}{5}\right)±\sqrt{\left(-\frac{2}{5}\right)^{2}-4\times 2\left(-\frac{24}{25}\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -\frac{2}{5} for b, and -\frac{24}{25} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{2}{5}\right)±\sqrt{\frac{4}{25}-4\times 2\left(-\frac{24}{25}\right)}}{2\times 2}
Square -\frac{2}{5} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{2}{5}\right)±\sqrt{\frac{4}{25}-8\left(-\frac{24}{25}\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-\frac{2}{5}\right)±\sqrt{\frac{4+192}{25}}}{2\times 2}
Multiply -8 times -\frac{24}{25}.
x=\frac{-\left(-\frac{2}{5}\right)±\sqrt{\frac{196}{25}}}{2\times 2}
Add \frac{4}{25} to \frac{192}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{2}{5}\right)±\frac{14}{5}}{2\times 2}
Take the square root of \frac{196}{25}.
x=\frac{\frac{2}{5}±\frac{14}{5}}{2\times 2}
The opposite of -\frac{2}{5} is \frac{2}{5}.
x=\frac{\frac{2}{5}±\frac{14}{5}}{4}
Multiply 2 times 2.
x=\frac{\frac{16}{5}}{4}
Now solve the equation x=\frac{\frac{2}{5}±\frac{14}{5}}{4} when ± is plus. Add \frac{2}{5} to \frac{14}{5} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{4}{5}
Divide \frac{16}{5} by 4.
x=-\frac{\frac{12}{5}}{4}
Now solve the equation x=\frac{\frac{2}{5}±\frac{14}{5}}{4} when ± is minus. Subtract \frac{14}{5} from \frac{2}{5} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=-\frac{3}{5}
Divide -\frac{12}{5} by 4.
x=\frac{4}{5} x=-\frac{3}{5}
The equation is now solved.
\frac{1}{25}-\frac{2}{5}x+x^{2}+x^{2}=1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{1}{5}-x\right)^{2}.
\frac{1}{25}-\frac{2}{5}x+2x^{2}=1
Combine x^{2} and x^{2} to get 2x^{2}.
-\frac{2}{5}x+2x^{2}=1-\frac{1}{25}
Subtract \frac{1}{25} from both sides.
-\frac{2}{5}x+2x^{2}=\frac{24}{25}
Subtract \frac{1}{25} from 1 to get \frac{24}{25}.
2x^{2}-\frac{2}{5}x=\frac{24}{25}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2x^{2}-\frac{2}{5}x}{2}=\frac{\frac{24}{25}}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{\frac{2}{5}}{2}\right)x=\frac{\frac{24}{25}}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-\frac{1}{5}x=\frac{\frac{24}{25}}{2}
Divide -\frac{2}{5} by 2.
x^{2}-\frac{1}{5}x=\frac{12}{25}
Divide \frac{24}{25} by 2.
x^{2}-\frac{1}{5}x+\left(-\frac{1}{10}\right)^{2}=\frac{12}{25}+\left(-\frac{1}{10}\right)^{2}
Divide -\frac{1}{5}, the coefficient of the x term, by 2 to get -\frac{1}{10}. Then add the square of -\frac{1}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{5}x+\frac{1}{100}=\frac{12}{25}+\frac{1}{100}
Square -\frac{1}{10} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{5}x+\frac{1}{100}=\frac{49}{100}
Add \frac{12}{25} to \frac{1}{100} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{10}\right)^{2}=\frac{49}{100}
Factor x^{2}-\frac{1}{5}x+\frac{1}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{10}\right)^{2}}=\sqrt{\frac{49}{100}}
Take the square root of both sides of the equation.
x-\frac{1}{10}=\frac{7}{10} x-\frac{1}{10}=-\frac{7}{10}
Simplify.
x=\frac{4}{5} x=-\frac{3}{5}
Add \frac{1}{10} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}