( \frac { 1 } { 5 } ( x - 10 ) > \frac { x - 1 } { 10 } - \frac { 2 - x } { 15 }
Solve for x
x>53
Graph
Share
Copied to clipboard
6\left(x-10\right)>3\left(x-1\right)-2\left(2-x\right)
Multiply both sides of the equation by 30, the least common multiple of 5,10,15. Since 30 is positive, the inequality direction remains the same.
6x-60>3\left(x-1\right)-2\left(2-x\right)
Use the distributive property to multiply 6 by x-10.
6x-60>3x-3-2\left(2-x\right)
Use the distributive property to multiply 3 by x-1.
6x-60>3x-3-4+2x
Use the distributive property to multiply -2 by 2-x.
6x-60>3x-7+2x
Subtract 4 from -3 to get -7.
6x-60>5x-7
Combine 3x and 2x to get 5x.
6x-60-5x>-7
Subtract 5x from both sides.
x-60>-7
Combine 6x and -5x to get x.
x>-7+60
Add 60 to both sides.
x>53
Add -7 and 60 to get 53.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}