( \frac { 1 } { 5 } ( x - 10 ) > \frac { 1 } { 10 } - \frac { 2 } { 15 }
Solve for x
x>\frac{59}{6}
Graph
Share
Copied to clipboard
\frac{1}{5}x+\frac{1}{5}\left(-10\right)>\frac{1}{10}-\frac{2}{15}
Use the distributive property to multiply \frac{1}{5} by x-10.
\frac{1}{5}x+\frac{-10}{5}>\frac{1}{10}-\frac{2}{15}
Multiply \frac{1}{5} and -10 to get \frac{-10}{5}.
\frac{1}{5}x-2>\frac{1}{10}-\frac{2}{15}
Divide -10 by 5 to get -2.
\frac{1}{5}x-2>\frac{3}{30}-\frac{4}{30}
Least common multiple of 10 and 15 is 30. Convert \frac{1}{10} and \frac{2}{15} to fractions with denominator 30.
\frac{1}{5}x-2>\frac{3-4}{30}
Since \frac{3}{30} and \frac{4}{30} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{5}x-2>-\frac{1}{30}
Subtract 4 from 3 to get -1.
\frac{1}{5}x>-\frac{1}{30}+2
Add 2 to both sides.
\frac{1}{5}x>-\frac{1}{30}+\frac{60}{30}
Convert 2 to fraction \frac{60}{30}.
\frac{1}{5}x>\frac{-1+60}{30}
Since -\frac{1}{30} and \frac{60}{30} have the same denominator, add them by adding their numerators.
\frac{1}{5}x>\frac{59}{30}
Add -1 and 60 to get 59.
x>\frac{59}{30}\times 5
Multiply both sides by 5, the reciprocal of \frac{1}{5}. Since \frac{1}{5} is positive, the inequality direction remains the same.
x>\frac{59\times 5}{30}
Express \frac{59}{30}\times 5 as a single fraction.
x>\frac{295}{30}
Multiply 59 and 5 to get 295.
x>\frac{59}{6}
Reduce the fraction \frac{295}{30} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}