Solve for φ
\phi =\frac{6}{23}\approx 0.260869565
Share
Copied to clipboard
\left(\frac{1+1}{40}+\frac{1}{40}+\frac{1}{2}\right)\phi =\frac{1}{20}+\frac{1}{20}+\frac{1}{20}
Since \frac{1}{40} and \frac{1}{40} have the same denominator, add them by adding their numerators.
\left(\frac{2}{40}+\frac{1}{40}+\frac{1}{2}\right)\phi =\frac{1}{20}+\frac{1}{20}+\frac{1}{20}
Add 1 and 1 to get 2.
\left(\frac{1}{20}+\frac{1}{40}+\frac{1}{2}\right)\phi =\frac{1}{20}+\frac{1}{20}+\frac{1}{20}
Reduce the fraction \frac{2}{40} to lowest terms by extracting and canceling out 2.
\left(\frac{2}{40}+\frac{1}{40}+\frac{1}{2}\right)\phi =\frac{1}{20}+\frac{1}{20}+\frac{1}{20}
Least common multiple of 20 and 40 is 40. Convert \frac{1}{20} and \frac{1}{40} to fractions with denominator 40.
\left(\frac{2+1}{40}+\frac{1}{2}\right)\phi =\frac{1}{20}+\frac{1}{20}+\frac{1}{20}
Since \frac{2}{40} and \frac{1}{40} have the same denominator, add them by adding their numerators.
\left(\frac{3}{40}+\frac{1}{2}\right)\phi =\frac{1}{20}+\frac{1}{20}+\frac{1}{20}
Add 2 and 1 to get 3.
\left(\frac{3}{40}+\frac{20}{40}\right)\phi =\frac{1}{20}+\frac{1}{20}+\frac{1}{20}
Least common multiple of 40 and 2 is 40. Convert \frac{3}{40} and \frac{1}{2} to fractions with denominator 40.
\frac{3+20}{40}\phi =\frac{1}{20}+\frac{1}{20}+\frac{1}{20}
Since \frac{3}{40} and \frac{20}{40} have the same denominator, add them by adding their numerators.
\frac{23}{40}\phi =\frac{1}{20}+\frac{1}{20}+\frac{1}{20}
Add 3 and 20 to get 23.
\frac{23}{40}\phi =\frac{1+1}{20}+\frac{1}{20}
Since \frac{1}{20} and \frac{1}{20} have the same denominator, add them by adding their numerators.
\frac{23}{40}\phi =\frac{2}{20}+\frac{1}{20}
Add 1 and 1 to get 2.
\frac{23}{40}\phi =\frac{1}{10}+\frac{1}{20}
Reduce the fraction \frac{2}{20} to lowest terms by extracting and canceling out 2.
\frac{23}{40}\phi =\frac{2}{20}+\frac{1}{20}
Least common multiple of 10 and 20 is 20. Convert \frac{1}{10} and \frac{1}{20} to fractions with denominator 20.
\frac{23}{40}\phi =\frac{2+1}{20}
Since \frac{2}{20} and \frac{1}{20} have the same denominator, add them by adding their numerators.
\frac{23}{40}\phi =\frac{3}{20}
Add 2 and 1 to get 3.
\phi =\frac{3}{20}\times \frac{40}{23}
Multiply both sides by \frac{40}{23}, the reciprocal of \frac{23}{40}.
\phi =\frac{3\times 40}{20\times 23}
Multiply \frac{3}{20} times \frac{40}{23} by multiplying numerator times numerator and denominator times denominator.
\phi =\frac{120}{460}
Do the multiplications in the fraction \frac{3\times 40}{20\times 23}.
\phi =\frac{6}{23}
Reduce the fraction \frac{120}{460} to lowest terms by extracting and canceling out 20.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}