Evaluate
18a^{2}-x^{2}
Expand
18a^{2}-x^{2}
Graph
Share
Copied to clipboard
\frac{1}{12}x^{2}+\frac{8}{3}xa+16a^{2}-\left(x+\frac{2}{3}a\right)^{2}+\left(a-x\right)\left(2a+\frac{1}{3}x\right)+\left(\frac{1}{3}a+\frac{1}{2}x\right)^{2}+\frac{1}{3}a^{2}
Use the distributive property to multiply \frac{1}{4}x+2a by \frac{1}{3}x+8a and combine like terms.
\frac{1}{12}x^{2}+\frac{8}{3}xa+16a^{2}-\left(x^{2}+\frac{4}{3}xa+\frac{4}{9}a^{2}\right)+\left(a-x\right)\left(2a+\frac{1}{3}x\right)+\left(\frac{1}{3}a+\frac{1}{2}x\right)^{2}+\frac{1}{3}a^{2}
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(x+\frac{2}{3}a\right)^{2}.
\frac{1}{12}x^{2}+\frac{8}{3}xa+16a^{2}-x^{2}-\frac{4}{3}xa-\frac{4}{9}a^{2}+\left(a-x\right)\left(2a+\frac{1}{3}x\right)+\left(\frac{1}{3}a+\frac{1}{2}x\right)^{2}+\frac{1}{3}a^{2}
To find the opposite of x^{2}+\frac{4}{3}xa+\frac{4}{9}a^{2}, find the opposite of each term.
-\frac{11}{12}x^{2}+\frac{8}{3}xa+16a^{2}-\frac{4}{3}xa-\frac{4}{9}a^{2}+\left(a-x\right)\left(2a+\frac{1}{3}x\right)+\left(\frac{1}{3}a+\frac{1}{2}x\right)^{2}+\frac{1}{3}a^{2}
Combine \frac{1}{12}x^{2} and -x^{2} to get -\frac{11}{12}x^{2}.
-\frac{11}{12}x^{2}+\frac{4}{3}xa+16a^{2}-\frac{4}{9}a^{2}+\left(a-x\right)\left(2a+\frac{1}{3}x\right)+\left(\frac{1}{3}a+\frac{1}{2}x\right)^{2}+\frac{1}{3}a^{2}
Combine \frac{8}{3}xa and -\frac{4}{3}xa to get \frac{4}{3}xa.
-\frac{11}{12}x^{2}+\frac{4}{3}xa+\frac{140}{9}a^{2}+\left(a-x\right)\left(2a+\frac{1}{3}x\right)+\left(\frac{1}{3}a+\frac{1}{2}x\right)^{2}+\frac{1}{3}a^{2}
Combine 16a^{2} and -\frac{4}{9}a^{2} to get \frac{140}{9}a^{2}.
-\frac{11}{12}x^{2}+\frac{4}{3}xa+\frac{140}{9}a^{2}+2a^{2}-\frac{5}{3}ax-\frac{1}{3}x^{2}+\left(\frac{1}{3}a+\frac{1}{2}x\right)^{2}+\frac{1}{3}a^{2}
Use the distributive property to multiply a-x by 2a+\frac{1}{3}x and combine like terms.
-\frac{11}{12}x^{2}+\frac{4}{3}xa+\frac{158}{9}a^{2}-\frac{5}{3}ax-\frac{1}{3}x^{2}+\left(\frac{1}{3}a+\frac{1}{2}x\right)^{2}+\frac{1}{3}a^{2}
Combine \frac{140}{9}a^{2} and 2a^{2} to get \frac{158}{9}a^{2}.
-\frac{11}{12}x^{2}-\frac{1}{3}xa+\frac{158}{9}a^{2}-\frac{1}{3}x^{2}+\left(\frac{1}{3}a+\frac{1}{2}x\right)^{2}+\frac{1}{3}a^{2}
Combine \frac{4}{3}xa and -\frac{5}{3}ax to get -\frac{1}{3}xa.
-\frac{5}{4}x^{2}-\frac{1}{3}xa+\frac{158}{9}a^{2}+\left(\frac{1}{3}a+\frac{1}{2}x\right)^{2}+\frac{1}{3}a^{2}
Combine -\frac{11}{12}x^{2} and -\frac{1}{3}x^{2} to get -\frac{5}{4}x^{2}.
-\frac{5}{4}x^{2}-\frac{1}{3}xa+\frac{158}{9}a^{2}+\frac{1}{9}a^{2}+\frac{1}{3}ax+\frac{1}{4}x^{2}+\frac{1}{3}a^{2}
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(\frac{1}{3}a+\frac{1}{2}x\right)^{2}.
-\frac{5}{4}x^{2}-\frac{1}{3}xa+\frac{53}{3}a^{2}+\frac{1}{3}ax+\frac{1}{4}x^{2}+\frac{1}{3}a^{2}
Combine \frac{158}{9}a^{2} and \frac{1}{9}a^{2} to get \frac{53}{3}a^{2}.
-\frac{5}{4}x^{2}+\frac{53}{3}a^{2}+\frac{1}{4}x^{2}+\frac{1}{3}a^{2}
Combine -\frac{1}{3}xa and \frac{1}{3}ax to get 0.
-x^{2}+\frac{53}{3}a^{2}+\frac{1}{3}a^{2}
Combine -\frac{5}{4}x^{2} and \frac{1}{4}x^{2} to get -x^{2}.
-x^{2}+18a^{2}
Combine \frac{53}{3}a^{2} and \frac{1}{3}a^{2} to get 18a^{2}.
\frac{1}{12}x^{2}+\frac{8}{3}xa+16a^{2}-\left(x+\frac{2}{3}a\right)^{2}+\left(a-x\right)\left(2a+\frac{1}{3}x\right)+\left(\frac{1}{3}a+\frac{1}{2}x\right)^{2}+\frac{1}{3}a^{2}
Use the distributive property to multiply \frac{1}{4}x+2a by \frac{1}{3}x+8a and combine like terms.
\frac{1}{12}x^{2}+\frac{8}{3}xa+16a^{2}-\left(x^{2}+\frac{4}{3}xa+\frac{4}{9}a^{2}\right)+\left(a-x\right)\left(2a+\frac{1}{3}x\right)+\left(\frac{1}{3}a+\frac{1}{2}x\right)^{2}+\frac{1}{3}a^{2}
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(x+\frac{2}{3}a\right)^{2}.
\frac{1}{12}x^{2}+\frac{8}{3}xa+16a^{2}-x^{2}-\frac{4}{3}xa-\frac{4}{9}a^{2}+\left(a-x\right)\left(2a+\frac{1}{3}x\right)+\left(\frac{1}{3}a+\frac{1}{2}x\right)^{2}+\frac{1}{3}a^{2}
To find the opposite of x^{2}+\frac{4}{3}xa+\frac{4}{9}a^{2}, find the opposite of each term.
-\frac{11}{12}x^{2}+\frac{8}{3}xa+16a^{2}-\frac{4}{3}xa-\frac{4}{9}a^{2}+\left(a-x\right)\left(2a+\frac{1}{3}x\right)+\left(\frac{1}{3}a+\frac{1}{2}x\right)^{2}+\frac{1}{3}a^{2}
Combine \frac{1}{12}x^{2} and -x^{2} to get -\frac{11}{12}x^{2}.
-\frac{11}{12}x^{2}+\frac{4}{3}xa+16a^{2}-\frac{4}{9}a^{2}+\left(a-x\right)\left(2a+\frac{1}{3}x\right)+\left(\frac{1}{3}a+\frac{1}{2}x\right)^{2}+\frac{1}{3}a^{2}
Combine \frac{8}{3}xa and -\frac{4}{3}xa to get \frac{4}{3}xa.
-\frac{11}{12}x^{2}+\frac{4}{3}xa+\frac{140}{9}a^{2}+\left(a-x\right)\left(2a+\frac{1}{3}x\right)+\left(\frac{1}{3}a+\frac{1}{2}x\right)^{2}+\frac{1}{3}a^{2}
Combine 16a^{2} and -\frac{4}{9}a^{2} to get \frac{140}{9}a^{2}.
-\frac{11}{12}x^{2}+\frac{4}{3}xa+\frac{140}{9}a^{2}+2a^{2}-\frac{5}{3}ax-\frac{1}{3}x^{2}+\left(\frac{1}{3}a+\frac{1}{2}x\right)^{2}+\frac{1}{3}a^{2}
Use the distributive property to multiply a-x by 2a+\frac{1}{3}x and combine like terms.
-\frac{11}{12}x^{2}+\frac{4}{3}xa+\frac{158}{9}a^{2}-\frac{5}{3}ax-\frac{1}{3}x^{2}+\left(\frac{1}{3}a+\frac{1}{2}x\right)^{2}+\frac{1}{3}a^{2}
Combine \frac{140}{9}a^{2} and 2a^{2} to get \frac{158}{9}a^{2}.
-\frac{11}{12}x^{2}-\frac{1}{3}xa+\frac{158}{9}a^{2}-\frac{1}{3}x^{2}+\left(\frac{1}{3}a+\frac{1}{2}x\right)^{2}+\frac{1}{3}a^{2}
Combine \frac{4}{3}xa and -\frac{5}{3}ax to get -\frac{1}{3}xa.
-\frac{5}{4}x^{2}-\frac{1}{3}xa+\frac{158}{9}a^{2}+\left(\frac{1}{3}a+\frac{1}{2}x\right)^{2}+\frac{1}{3}a^{2}
Combine -\frac{11}{12}x^{2} and -\frac{1}{3}x^{2} to get -\frac{5}{4}x^{2}.
-\frac{5}{4}x^{2}-\frac{1}{3}xa+\frac{158}{9}a^{2}+\frac{1}{9}a^{2}+\frac{1}{3}ax+\frac{1}{4}x^{2}+\frac{1}{3}a^{2}
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(\frac{1}{3}a+\frac{1}{2}x\right)^{2}.
-\frac{5}{4}x^{2}-\frac{1}{3}xa+\frac{53}{3}a^{2}+\frac{1}{3}ax+\frac{1}{4}x^{2}+\frac{1}{3}a^{2}
Combine \frac{158}{9}a^{2} and \frac{1}{9}a^{2} to get \frac{53}{3}a^{2}.
-\frac{5}{4}x^{2}+\frac{53}{3}a^{2}+\frac{1}{4}x^{2}+\frac{1}{3}a^{2}
Combine -\frac{1}{3}xa and \frac{1}{3}ax to get 0.
-x^{2}+\frac{53}{3}a^{2}+\frac{1}{3}a^{2}
Combine -\frac{5}{4}x^{2} and \frac{1}{4}x^{2} to get -x^{2}.
-x^{2}+18a^{2}
Combine \frac{53}{3}a^{2} and \frac{1}{3}a^{2} to get 18a^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}