Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{2}{3}b\right)^{2}-\left(\frac{1}{4}a\right)^{2}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{2}{3}\right)^{2}b^{2}-\left(\frac{1}{4}a\right)^{2}
Expand \left(\frac{2}{3}b\right)^{2}.
\frac{4}{9}b^{2}-\left(\frac{1}{4}a\right)^{2}
Calculate \frac{2}{3} to the power of 2 and get \frac{4}{9}.
\frac{4}{9}b^{2}-\left(\frac{1}{4}\right)^{2}a^{2}
Expand \left(\frac{1}{4}a\right)^{2}.
\frac{4}{9}b^{2}-\frac{1}{16}a^{2}
Calculate \frac{1}{4} to the power of 2 and get \frac{1}{16}.
\left(\frac{2}{3}b\right)^{2}-\left(\frac{1}{4}a\right)^{2}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{2}{3}\right)^{2}b^{2}-\left(\frac{1}{4}a\right)^{2}
Expand \left(\frac{2}{3}b\right)^{2}.
\frac{4}{9}b^{2}-\left(\frac{1}{4}a\right)^{2}
Calculate \frac{2}{3} to the power of 2 and get \frac{4}{9}.
\frac{4}{9}b^{2}-\left(\frac{1}{4}\right)^{2}a^{2}
Expand \left(\frac{1}{4}a\right)^{2}.
\frac{4}{9}b^{2}-\frac{1}{16}a^{2}
Calculate \frac{1}{4} to the power of 2 and get \frac{1}{16}.