Solve for m
m = -\frac{15}{4} = -3\frac{3}{4} = -3.75
Share
Copied to clipboard
\frac{1}{64}-\left(\frac{1}{4}\right)^{2}m-25\times \frac{1}{4}+6=0
Calculate \frac{1}{4} to the power of 3 and get \frac{1}{64}.
\frac{1}{64}-\frac{1}{16}m-25\times \frac{1}{4}+6=0
Calculate \frac{1}{4} to the power of 2 and get \frac{1}{16}.
\frac{1}{64}-\frac{1}{16}m-\frac{25}{4}+6=0
Multiply 25 and \frac{1}{4} to get \frac{25}{4}.
\frac{1}{64}-\frac{1}{16}m-\frac{400}{64}+6=0
Least common multiple of 64 and 4 is 64. Convert \frac{1}{64} and \frac{25}{4} to fractions with denominator 64.
\frac{1-400}{64}-\frac{1}{16}m+6=0
Since \frac{1}{64} and \frac{400}{64} have the same denominator, subtract them by subtracting their numerators.
-\frac{399}{64}-\frac{1}{16}m+6=0
Subtract 400 from 1 to get -399.
-\frac{399}{64}-\frac{1}{16}m+\frac{384}{64}=0
Convert 6 to fraction \frac{384}{64}.
\frac{-399+384}{64}-\frac{1}{16}m=0
Since -\frac{399}{64} and \frac{384}{64} have the same denominator, add them by adding their numerators.
-\frac{15}{64}-\frac{1}{16}m=0
Add -399 and 384 to get -15.
-\frac{1}{16}m=\frac{15}{64}
Add \frac{15}{64} to both sides. Anything plus zero gives itself.
m=\frac{15}{64}\left(-16\right)
Multiply both sides by -16, the reciprocal of -\frac{1}{16}.
m=\frac{15\left(-16\right)}{64}
Express \frac{15}{64}\left(-16\right) as a single fraction.
m=\frac{-240}{64}
Multiply 15 and -16 to get -240.
m=-\frac{15}{4}
Reduce the fraction \frac{-240}{64} to lowest terms by extracting and canceling out 16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}