Evaluate
\frac{7}{5}=1.4
Factor
\frac{7}{5} = 1\frac{2}{5} = 1.4
Share
Copied to clipboard
\left(\frac{5}{20}+\frac{12}{20}+\frac{3}{8}\right)\times \frac{1\times 7+1}{7}
Least common multiple of 4 and 5 is 20. Convert \frac{1}{4} and \frac{3}{5} to fractions with denominator 20.
\left(\frac{5+12}{20}+\frac{3}{8}\right)\times \frac{1\times 7+1}{7}
Since \frac{5}{20} and \frac{12}{20} have the same denominator, add them by adding their numerators.
\left(\frac{17}{20}+\frac{3}{8}\right)\times \frac{1\times 7+1}{7}
Add 5 and 12 to get 17.
\left(\frac{34}{40}+\frac{15}{40}\right)\times \frac{1\times 7+1}{7}
Least common multiple of 20 and 8 is 40. Convert \frac{17}{20} and \frac{3}{8} to fractions with denominator 40.
\frac{34+15}{40}\times \frac{1\times 7+1}{7}
Since \frac{34}{40} and \frac{15}{40} have the same denominator, add them by adding their numerators.
\frac{49}{40}\times \frac{1\times 7+1}{7}
Add 34 and 15 to get 49.
\frac{49}{40}\times \frac{7+1}{7}
Multiply 1 and 7 to get 7.
\frac{49}{40}\times \frac{8}{7}
Add 7 and 1 to get 8.
\frac{49\times 8}{40\times 7}
Multiply \frac{49}{40} times \frac{8}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{392}{280}
Do the multiplications in the fraction \frac{49\times 8}{40\times 7}.
\frac{7}{5}
Reduce the fraction \frac{392}{280} to lowest terms by extracting and canceling out 56.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}